Query Processing

CPS 216

Advanced Database Systems

Announcements (February 17)

% Reading assignment for this week
® Variant indexes (due Wednesday)
<+ Homework #1 is being graded
= Sample solution available outside my office

< Homework #2 due February 26

% Midterm and course project proposal in 2V weeks

Overview

< Many different ways of processing the same query
= Scan? Sort? Hash? Use an index?
= All with different performance characteristics

< Best choice depends on the situation
= Implement all alternatives

® Let the query optimizer choose at run-time

Notation

% Relations: R, §

% Tuples: 7, s

« Number of tuples: |R], |S|

% Number of disk blocks: B(R), B(S)

< Number of memory blocks available: M

< Cost metric
= Number of I/O’s

® Memory requirement

Table scan

+ Scan table R and process the query
= Selection over R
= Projection of R without duplicate elimination
% 1/O’s: B(R)
= Trick for selection: stop early if it is a lookup by key
< Memory requirement: 2 (double buffering)
< Not counting the cost of writing the result out
= Same for any algorithm!

= Maybe not needed—results may be pipelined directly
into another operator

Nested-loop join

% Rpg, S
< For each block of R, and for each # in the block:
For each block of §, and for each s in the block:
Output 75 if p evaluates to true over 7 and s
= R is called the outer table; § is called the inner table
+ 1/O’s: BR) + |R| - B(S)
% Memory requirement: 4 (double buffering)

< Improvement:

7

More improvements of nested-loop join

+ Stop early
= If the key of the inner table is being matched
= May reduce half of the I/O’s for unoptimized nested-loop

< Make use of available memory

External merge sort

Problem: sort R, but R does not fit in memory
% Pass 0: read M blocks of R at a time, sort them, and
write out a level-0 run
® There are [B(R) / M | level-0 sorted runs
% Pass 7: merge (M — 1) level-(-1) runs at a time, and
write out a level-7 run
= (M — 1) memory blocks for input, 1 to buffer output
= # of level-Z runs = [# of level-(i—1) runs / (M — 1) |

+ Final pass produces 1 sorted run

Example of external merge sort

% Input: 1,7,4,5,2,8,9,6,3,0
% Each block holds one number, and memory has 3 blocks
< Pass 0
" 1,7,451,4,7
"52,8—25,8
" 96,3369
=0 —0
% Pass 1
" 1,4,7+2,58—>1,2,45,7,8
=3,69+0 —+0,3,6,9
% Pass 2 (final)
= 1,2,4,57,8+0,3,6,9—0,1,2,3,4,5,6,7,8,9

Ry
o

10

Performance of external merge sort

« Number of passes: [log ,, [BR)/M]] + 1
<+ I/O’s

® Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once

= Subtract B(R) for the final pass
= Roughly, this is OC B(R) - log , B(R))

< Memory requirement: M (as much as possible)

Some tricks for sorting

< Double buffering
= Allocate an additional block for each run
® Trade-off: smaller fan-in (more passes)
< Blocked 1/O
= Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)
= Trade-off: more sequential I[/O’s <+ smaller fan-in (more
passes)
% Dealing with input whose size is not an exact power
of fan-in

Internal sort algorithm

% Quicksort
@ Fast

< Replacement selection
® One block for input, one for output, rest for a heap
= Fill the heap with input records

® Find the smallest record in the heap that is no less than
the largest record in the current run

® If that exists, move it to the output buffer, and move a new
record from input buffer into the heap

® If that does not exist, flush output and start a new run

& Slower than quicksort, but produces longer runs (twice
the size of memory if records are in random order)

Sort-merge join

*RDG 4 —5pS
< Sort R and § by their join attributes, and then merge
r, 5 = the first tuples in sorted R and §
Repeat until one of R and § is exhausted:
If r.A > 5.B then s = next tuple in §
else if ».A < 5.B then » = next tuple in R
else output all matching tuples, and
r,§ = next in R and §
% I/O’s: sorting + 2 B(R) + 2 B(S)
® In most cases (e.g., join of key and foreign key)
= Worst case is B(R) - B(S): everything joins

Example
R: S: R><p - 558t
=r.d =1 =s5.B=1 7ol
=4 =3 =J,.B =2 7555
r3.d =3 =3B =3 7554
=>r.d=5 s+B =13 7353
=4 =7 =i.B =8 7384
=r.Ad =7 585
=r.A =8
Optimization of SM]J

% Idea: combine join with the merge phase of merge sort
% Sort: produce sorted runs of size M for R and §

< Merge and join: merge the runs of R, merge the runs of §,
and merge-join the result streams as they are generated!

Dik Memory
1 m G
§ R{ 1 O
2 I in
‘8 D >JO—>D-—>
LR | e— 5
Merge

Performance of two-pass SM]J

+1/O0’s: 3 - (B(R) + B())
< Memory requirement

= To be able to merge in one pass, we should have enough
memory to accommodate one block from each run: M >
B(R)/M + B©)/ M

= M > sqre(B(R) + B(S))

Other sort-based algorithms

< Union (set), difference, intersection
= More or less like SMJ
< Duplication elimination
= External merge sort
¢ Eliminate duplicates in sort and merge
% GROUP BY and aggregation
= External merge sort
® Produce partial aggregate values in each run
¢ Combine partial aggregate values during merge

* Partial aggregate values don’t always work though
— Examples: SUM(DISTINCT ...), MEDIAN(...)

Hash join

FR>Y 58
% Main idea
= Partition R and § by hashing their join attributes, and
then consider corresponding partitions of R and §

= If r.A and 5.B get hashed to different partitions, they
don’t join
> R4

Nested-loop join considers

all slots

Hash join considers
only those along the diagonal

Y R R

“w

Partitioning phase

% Partition R and § according to the same hash
function on their join attributes

Memory

R —p

O---0000

M — 1 partitions of R

Same for §

20

Probing phase

< Read in each partition of R, stream in the
corresponding partition of §, join

® Typically build a hash table for the partition of R

® Not the same hash function used for partition, of course!

R
partitions
&
partitions

Memory
Ooooad-..a

N0

For each S tuple,
[probe and join

¥

Performance of hash join

+1/O’s: 3 - (B(R) + B(S))
< Memory requirement:
= In the probing phase, we should have enough memory to
fit one partition of R: M — 1 > B(R) / (M — 1)
= M > sqrt(B(R))
® We can always pick R to be the smaller relation, so:
M > sqre(min(B(R), B(S))

22

Hash join tricks

< What if a partition is too large for memory?
= Read it back in and partition it further!

¢ See the duality in multi-pass merge sort here?

Hybrid hash join

< What if there is extra memory available?

= Use it to avoid writing/re-reading partitions
® Of both R and §!

Memory __ Disk

R=> B —

O ————

A generalization of the idea is described in
the survey paper by Graefe

Hash join versus SMJ

(Assuming two-pass)
< I/O’s: same
< Memory requirement: hash join is lower
= sqre(min(B(R), B(S)) < sqrt(B(R) + B(S))
= Hash join wins big when two relations have very different sizes

% Other factors

What about nested-loop join?

26

Other hash-based algorithms

% Union (set), difference, intersection

® More or less like hash join
% Duplicate elimination

= Check for duplicates within each partition/bucket
< GROUP BY and aggregation

= Apply the hash functions to GROUP BY attributes

= Tuples in the same group must end up in the same
partition/bucket

= Keep a running aggregate value for each group

N
§

Duality of sort and hash

< Divide-and-conquer paradigm
= Sorting: physical division, logical combination
= Hashing: logical division, physical combination
< Handling very large inputs
= Sorting: multi-level merge
® Hashing: recursive partitioning
% I/O patterns
= Sorting: sequential write, random read (merge)

® Hashing: random write, sequential read (partition)

