
1

Query Processing with Indexes

CPS 216

Advanced Database Systems

2

Announcements (February 19)

Reading assignment for next week
Buffer management (due next Wednesday)

Homework #1 has been graded
Grades will posted on Blackboard

Sample solution available outside my office
• Bugs will be corrected in email

Homework #2 due next Thursday

Midterm and course project proposal in two weeks

3

Review

Many different ways of processing the same query
Scan (e.g., nested-loop join)

Sort (e.g., sort-merge join)

Hash (e.g., hash join)

Index

4

Selection using index

Equality predicate: σA = v (R)
Use an ISAM, B+-tree, or hash index on R(A)

Range predicate: σA > v (R)
Use an ordered index (e.g., ISAM or B+-tree) on R(A)

Hash index is not applicable

Indexes other than those on R(A) may be useful
Example: B+-tree index on R(A, B)

How about B+-tree index on R(B, A)?

5

Index versus table scan

Situations where index clearly wins:

Index-only queries which do not require retrieving
actual tuples

Example: πA (σA > v (R))

Primary index clustered according to search key
One lookup leads to all result tuples in their entirety

6

Index versus table scan (cont’d)

BUT(!):

Consider σA > v (R) and a secondary, non-clustered
index on R(A)

Need to follow pointers to get the actual result tuples

Say that 20% of R satisfies A > v
• Could happen even for equality predicates

I/O’s for index-based selection: lookup + 20% |R|

I/O’s for scan-based selection: B(R)

Table scan wins if a block contains more than 5 tuples

2

7

Index nested-loop join

R R.A = S.B S
Idea: use the value of R.A to probe the index on S(B)
For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s with s.B = r.A
Output rs

I/O’s: B(R) + |R| · (index lookup)
Typically, the cost of an index lookup is 2-4 I/O’s
Beats other join methods if |R| is not too big
Better pick R to be the smaller relation

Memory requirement: 2

8

Tricks for index nested-loop join

Goal: reduce |R| · (index lookup)

For tree-based indexes, keep the upper part of the
tree in memory

For extensible hash index, keep the directory in
memory

Sort or partition R according to the join attribute
Improves locality: subsequent lookup may follow the
same path or go to the same bucket

9

Zig-zag join using ordered indexes

R R.A = S.B S
Idea: use the ordering provided by the indexes on R(A) and
S(B) to eliminate the sorting step of sort-merge join

Trick: use the larger key to probe the other index
Possibly skipping many keys that do not match

B+-tree on R(A)

B+-tree on S(B)

1 2 3 4 7 9 18

1 7 9 11 12 17 19

10

More indexes ahead!

Bitmap index
Generalized value-list index

Projection index

Bit-sliced index

11

Search key values × tuples

Looks familiar?
Keywords × documents

1 1 0 … 0
0 0 0 … 0
0 0 1 … 1
0 0 0 … 0
0 0 0 … 0
… … … … …

Tuples

8

10
9

26
108

Search key values

1 means tuple has the particular search key value
0 means otherwise

0 1 2 n – 1

12

Bitmap index

Value-list index—stores the matrix by rows
Traditionally list contains pointers to tuples

B+-tree: tuples with same search key values

Inverted list: documents with same keywords

If there are not many search key values, and there
are lots of 1’s in each row, pointer list is not space-
efficient

How about a bitmap?

Still a B+-tree, except leaves have a different format

3

13

Technicalities

How do we go from a bitmap index (0 to n – 1) to
the actual tuple?

One more level of indirection solves everything

Or, given a bitmap index, directly calculate the
physical block number and the slot number within
the block for the tuple

In either case, certain block/slot may be invalid
Because of deletion, or variable-length tuples

Keep an existence bitmap: bit set to 1 if tuple exists

14

Bitmap versus traditional value-list

Operations on bitmaps are faster than pointer lists
Bitmap AND: bit-wise AND

Value-list AND: sort-merge join

Bitmap is more efficient when the matrix is
sufficiently dense; otherwise, pointer list is more
efficient

Smaller means more in memory and fewer I/O’s

Generalized value-list index: with both bitmap and
pointer list as alternatives

15

TID A B …
0 8 … …
1 8 … …
2 26 … …
3 108 … …
… … … …

n -1 10 … …

Projection index

Just store πA (R) and use it as an index!

Could be implicit
and not explicitly stored

TID A B …
0 8 … …
1 8 … …
2 26 … …
3 108 … …
… … … …

n -1 10 … …

Projection index

16

Why projection index?

Idea: still a table scan, but we are scanning a much
smaller table (project index)

Savings could be substantial for long tuples with lots of
attributes

Looks familiar?
DSM!

Except that we keep the original table

17

Bit-sliced index

If a column stores binary numbers, then slice their
bits vertically

Basically a projection index by slices

Projection index

TID A
0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0
2 0 0 0 1 1 0 1 0
3 0 1 1 0 1 1 0 0
… …

n -1 0 0 0 0 1 0 1 0

Bit-sliced index

Slice 0Slice 7 …

18

Aggregate query processing example

SELECT SUM(dollar_sales)
FROM Sales
WHERE condition;
Already found Bf (a bitmap or a sorted list of TID’s
that point to Sales tuples that satisfy condition)

Probably used a secondary index

Need to compute SUM(dollar_sales) for tuples in Bf

4

19

SUM without any index

For each tuple in Bf, go fetch the actual tuple, and
add dollar_sales to a running sum

I/O’s: number of Sales blocks with Bf tuples
Assuming we fetch them in sorted order

20

SUM with a value-list index
Assume a value-list index on Sales(dollar_sales)
Idea: the index stores dollar_sales values and their counts (in
a pretty compact form)

sum = 0;
Scan Sales(dollar_sales) index; for each indexed value v with
value-list Bv:

sum += v × count-1-bits(Bv AND Bf);

I/Os: number of blocks taken by the value-list index
Bitmaps can possibly speed up AND and reduce the size of
the index

21

SUM with a projection index

Assume a project index on Sales(dollar_sales)
Idea: merge join Bf and the projection index, add
joining tuples’ dollar_sales to a running sum

Assuming both Bf and the index are sorted on TID

I/O’s: number of blocks taken by the projection
index

Compared with a value-list index, the projection index
may be more compact (no empty space or pointers), but
it does store duplicate dollar_sales values

Also: simpler algorithm, fewer CPU operations

22

SUM with a bit-sliced index
Assume a bit-sliced index on Sales(dollar_sales), with slices
Bk – 1, …, B1, B0

sum = 0;
for i = 0 to k – 1:

sum += 2i × count-1-bits(Bi AND Bf);

I/O’s: number of blocks taken by the bit-sliced index
Conceptually a bit-sliced index contains the same
information as a projection index

But the bit-sliced index does not keep TID
Bitmap AND is faster

23

Summary of SUM

Best: bit-sliced index
Index is small

Bf can be applied fast!

Good: projection index

Not bad: value-list index
Full-fledged index carries a bigger overhead

• The fact that we have counts of values helped

• But we did not really need values to be ordered

24

MEDIAN

SELECT MEDIAN(dollar_sales)
FROM Sales
WHERE condition;
Same deal: already found Bf (a bitmap or a sorted
list of TID’s that point to Sales tuples that satisfy
condition)

Need to find the dollar_sales value that is greater
than or equal to ½ × count-1-bits(Bf) dollar_sales
values among Bf tuples

5

25

MEDIAN with an ordered value-list index

Idea: take advantage of the fact that the index is
ordered by dollar_sales

Scan the index in order, count the number of tuples
that appeared in Bf until the count reaches ½ ×
count-1-bits(Bf)

I/O’s: roughly half of the index

26

MEDIAN with a projection index

In general, need to sort the index by dollar_sales
Well, when you sort, you more or less get back an
ordered value-list index!

Not useful unless Bf is small

27

MEDIAN with a bit-sliced index

Tough at the first glance—index is not sorted

Think of it as sorted
We won’t actually make use of the this fact

0 0 0…
0 0 1…
1 0 0…
1 1 0…
1 1 1…

More than half are 0’s?
Look at Bk – 1 first

Yes; continue searching
for median here

No; continue searching
for median here

By looking at Bk – 1 we know the (k – 1)-th bit of the median

28

MEDIAN with a bit-sliced index

median = 0;
Bcurrent = Bf; // which tuples we are considering
sofar = 0; // number of tuples whose values are less

// than what we are considering
for i = k – 1 to 0:

if (sofar + count-1-bits(Bcurrent AND NOT(Bi))
· ½ × count-1-bits(Bf)):

Bcurrent = Bcurrent AND Bi;
sofar += count-1-bits(Bcurrent AND NOT(Bi);
median += 2i;

else:
Bcurrent = Bcurrent AND NOT(Bi);

I/O’s: still need to scan the entire index

29

Summary of MEDIAN

Best: ordered value-list index
It helps to be ordered!

Pretty good: bit-sliced index
Could beat ordered value-list index if Bf is “clustered”

• Only need to retrieve the corresponding segment

30

More variant indexes

“Improved Query Performance with Variant Indexes,”
by O’Neil and Quass. SIGMOD, 1997

MIN/MAX, and range query using bit-sliced index

Join indexes for star schema
Traditional: one for each combination of foreign columns

Bitmap: one for each foreign column

Precomputed query results (materialized views)?

6

31

Variant vs. traditional indexes

What is the more glaring problem of these variant
indexes that makes them not as widely applicable as
the B+-tree?

Difficult to update

How did the paper get away with that?
OLAP with periodic batch updates

