XML-Relational Mapping

CPS 216

Advanced Database Systems

Announcements (March 18)

< Midterm sample solution available outside my office
< Course project milestone 2 due March 30
< Homework #3 due April 6
% Talk by Amol Deshpande
= Adaptive Query Processing to Handle Estimation Errors
= Monday, 11:30am-12:30pm, D106
< Reading assignment due next Monday
= Two VLDB papers on native XML databases

Approaches to XML processing

% Text files (!)
+ Specialized XML DBMS

= Lore (Stanford), Strudel (AT&T), Tamino/QuiP
(Software AG), X-Hive, Timber (Michigan), etc.

= Still a long way to go
% Object-oriented DBMS
= eXcelon (ObjectStore), ozone, etc.
= Not as mature as relational DBMS
< Relational (and object-relational) DBMS

= Middleware and/or object-relational extensions

Mapping XML to relational

% Store XML in a CLOB (Character Large OBject) column
= Simple, compact
= Full-text indexing can help (often provided by DBMS vendors as
object-relational “extensions”)
= Poor integration with relational query processing
= Updates are expensive
% Alternatives?
= Schema-oblivious mapping:
well-formed XML — generic relational schema
* Node/edge-based mapping for graphs
* Interval-based mapping for trees

* Path-based mapping for trees

= Schema-aware mapping:
valid XML — special relational schema based on DTD

Node/edge-based: schema

% Element(eid, tag)
% Attribute(eid, attrName, attrValue) Key: (eid, attrName)

= Attribute order does not matter
% ElementChild(eid, pos, child)

= pos specifies the ordering of children

Keys: (eid, pos), (child)

= child references either Element(eid) or Text(tid)
% Text(tid, value)

® tid cannot be the same as any eid
= Need to “invent” lots of id’s

= Need indexes for efficiency, e.g., Element(tag), Text(value)

Node/edge-based: example

Element ElementChild
<bibliography> : : .
<book ISBN="ISBN-10" price="80.00"> Gl t‘?g - il || |l
<title>Foundations of Databases</title> |€0 |bibliography| [e0 |1 [el
<author>Abi teboul</author>
<author>Hul1</author> cil b‘_mk al | |e2
<author>Vianu</author> e2 |title el |2 e3
<publisher>Addison Wesley</publisher> [53 [author el |13 led
<year>1995</year>
</book>. e4 |author el |4 eb
</bibliography> e5 [author el |5 |e6
g - e6 |publisher el |6 e7
Attributeleid |attriame attrvalue el e |1 |to
el |rse ISBN-10 3 T
el |price 80 ed |1 t2
Text[tid [value e5 [1 |t3
t0_|Foundations of Databases e6 |1 |t
t1 [Abiteboul e7 |1 |t5
t2 [Hull
t3 |Vianu
t4 |Addison Wesley
t5 |1995

Node/edge-based: simple paths

< //title
= SELECT eid FROM Element WHERE tag = 'title';

« //section/title
= SELECT e2.eid

FROM Element el, ElementChild c, Element e2

WHERE el.tag = 'section'

AND e2.tag = 'title'

AND el.eid = c.eid

AND c.child = e2.eid;

@ Path expression becomes joins!

= Number of joins is proportional to the length of the path
expression

Node/edge-based: more complex paths

% //bibliography/book[author="Abiteboul"]/@price
= SELECT a.attrValue
FROM Element el, ElementChild cl,
Element e2, Attribute a
WHERE el.tag = 'bibliography'
AND el.eid = cl.eid AND cl.child = e2.eid
AND e2.tag = 'book'
AND EXISTS (SELECT * FROM ElementChild c2,
Element e3, ElementChild c3, Text t
WHERE e2.eid = c2.eid AND c2.child = e3.eid
AND e3.tag = 'author'
AND e2.eid = c3.eid AND c3.child = t.tid
AND t.value = 'Abiteboul")
AND e2.eid = a.eid
AND a.attrName = 'price';

Node/edge-based: descendent-or-self

< //book//title
® Requires SQL3 recursion
= WITH ReachableFromBook(id) AS
((SELECT eid FROM Element WHERE tag = 'book')
UNION ALL
(SELECT c.child
FROM ReachableFromBook r, ElementChild c
WHERE r.eid = c.eid))
SELECT eid
FROM Element
WHERE eid IN (SELECT * FROM ReachableFromBook)
AND tag = 'title';

10

Interval-based: schema

% Element(left, right, level, tag)
= Jeft is the start position of the element
= right is the end position of the element
= Jevel is the nesting depth of the element (strictly speaking, unnecessary)
= Key is left
< Attribute(left, attrName, attrValue)
% Text(left, level, value)
@ Where did ElementChild go?
= E1 is the parent of E2 iff:

[E1.left, E1.right} D {E2.left, E2.right], and
El.Jevel = E2.level — 1

Interval-based: example

1<bibliography>

2<book ISBN="ISBN-10" price="80.00">
3<title>4Foundations of Databases</title>5
6<author>7Abiteboul</author>8
9<author>10Hul1</author>11
12<author>13Vianu</author>14
15<publisher>16Addison Wesley</publisher>17
18<year>191995</year>20

</book>21.
< >
/bibliography>999 bibh‘ogN
book 2,21,2

o
title author author author publisher year
3,53 6,8,3 9,11,3 12,14,3 15,17,3 18,20,3

Interval-based: queries

% //section/title
= SELECT e2.left
FROM Element el, Element e2
WHERE el.tag = 'section' AND e2.tag = 'title'
AND el.left < e2.1eft AND e2.right < el.right
AND el.level = e2.level-1;

& Path expression becomes “containment” joins!
* Number of joins is proportional to path expression length
« //book//title
= SELECT e2.Teft
FROM Element el, Element e2

WHERE el.tag = 'book' AND e2.tag = 'section'
AND el.left < e2.1eft AND e2.right < el.right;

% No recursion!

How about XQuery?

DeHaan et al. SIGMOD 2003

< Evaluating an XQuery expression results in a sequence of
environments
® An environment E maps each query variable v to its value: a forest
of XML trees (a node-set) f,
< Encode using tables with “dynamic intervals”
= Table I: increasing sequence of integers, one per environment
= For each query variable , create a table T (s@ring), left), r(ight))
representing the value of v in all environments
* Sorted on / to support efficient processing

* Different environments form non-overlapping regions

Example T,

I 1

2 | <person> [174 | 195
eid 175 178
personl 176 177
<name> 17T 182
Jaak Tempesti 180 181
<emailaddress> 183 186
mailto:Tezpesti@labs.com 184 185
<phone> 187 190
+0 (B73) 14873867 188 188
<homepage> 191 184

| | betrp:/fwwv.labs.com/ Tempesti | 192 | 193

H <parsen> 2088 | 2109
eid 2080
personi 2060
<name> 2003
Cong Rosca 204
<emailaddress> 2007
mailto:Rosca@uashington.edu 2008
<phome> 2101
+0 (64) 27711230 2102
<homepage> 2105

| bttp://www. washington. edu/"Rosca | 2106 |
wy = B6

Translating /

% Given T, for values of », compute v/name
= Compute v/*

CREATE VIEW T1 AS
SELECT * FROM Tv t
WHERE EXISTS(SELECT * FROM Tv WHERE 1<t.1 AND t.r<r);

Compute name roots of v/*

CREATE VIEW T2 AS

SELECT * FROM T1 t

WHERE s = 'name'

AND NOT EXISTS(SELECT * FROM T1 WHERE 1<t.1 AND t.r<r);

Compute v/name

CREATE VIEW T3 AS
SELECT * FROM Tv t
WHERE EXISTS(SELECT * FROM T2 WHERE 1<=t.1 AND t.r<=r);

Translating //

Given T, for values of », compute v/ /*

= How about:
CREATE VIEW T1 AS
SELECT t2.* FROM Tv tl1, Tv t2
WHERE t1.7<=t2.1 AND t2.r<=t2.1;
¢ Almost there, but environments overlap now
" Fix: let w = max{t.r |t €T,}
CREATE VIEW T1 AS
SELECT t2.s, tl.1*w + t2.1, tl1.1*w + t2.r
FROM Tv t1, Tv t2
WHERE t1.1<=t2.1 AND t2.r<=t2.1;

= What would this do to the size of T ,?

Translating for

T [T, T
E i fl f fy
E i I fn

Eyfr = ¢)'] | weiy 40y ¥

Ei|x r'll wiy 417 f I r';‘-' f':'
Enlr = 8] | wein + 82 I& ,5‘3.

Eulr = 5] | i+ 15 n .":

Figure 6: TRANSLATION OF “forr € edoe’™ 18 THE ENVIRONMENT FOR Ti....,Tm.

Summary of interval-based mapping

< Path expression steps become containment joins

% No recursion needed for descendent-or-self

% Comprehensive XQuery-SQL translation is possible
with dynamic interval encoding

® Looks hairy, but with some special tweaks to the
relational engine, it actually performs better than many
of the currently available native XQuery products!

& Set-oriented processing helps!

A path-based mapping

Label-path encoding
% Element(pathid, left, right, value), Path(pathid, path)
®= path is a label path starting from the root

= Why are /eft and right still needed? To preserve structure

Element Path

pathid [left |right|.. pathid [path

1 1 999 |.. 1 /bibliography

2 2 21 2 /bibliography/book

3 3 5 8 /bibliography/book/title
4 6 8 4 bibliography/book/author
4 9 11 .

4 12 14

20

Label-path encoding: queries

< Simple path expressions with no conditions
//book//title
= Perform string matching on Path
= Join qualified parhid’s with Element
< Path expression with attached conditions need to be broken
down, processed separately, and joined back
//book[publisher='Prentice Hall']/title
" Evaluate //book
" Evaluate //book/title
= Evaluate //book/publisher[text()="'Prentice Hall']
= Join to ensure tit1e and publisher belong to the same book

Another path-based mapping

Dewey-order encoding

< Each component of the id represents the order of the
child within its parent

= Unlike label-path, this encoding is “lossless”

bibliography g 1

title author author author publisher year
111 112 113 114 1LL5 1.6

22

Dewey-order encoding: queries

< Examples:
//title
//section/title
//book//title
//book[publisher='Prentice Hall']/title
® Works similarly as interval-based mapping
= Serves a different purpose from label-path encoding

= Any advantage over interval-based mapping?

Schema-aware mapping

% Idea: use DTD to design a better schema

< Basic approach: elements of the same type go into one table
® Tag name — table name
= Attributes — columns
* If one exists, ID attribute — key column; otherwise, need to “invent” a key
* IDREF attribute — foreign key column
= Children of the element — foreign key columns

* Ordering of columns encodes ordering of children

<IDOCTYPE bibliography [..

<IELEMENT book (title, .)> book(ISBN, price, title_id, ...)
<IATTLIST book ISBN 10 #REQUIRED>

<IATTLIST book price CDATA #IMPLIED> title(id, PCDATA_id)

; <IELEMENT title (#PCDATA)>.. PCDATA(d, value)

Handling * and + in DTD

< What if an element can have any number of children?
< Example: Book can have multiple authors
= book(ISBN, price, title_id, author_id, publisher_id, year id)?
“BCNF?
% Idea: create another table to track such relationships
= book(ISBN, price, title_id, publisher_id, year_id)
= book_author(ISBN, author_id)

BCNF decomposition in action!

A further optimization: merge book_author into author

< Need to add position information if ordering is important
= book_author(ISBN, author_pos, author_id)

Inlining

% An author element just has a PCDATA child
% Instead of using foreign keys
= book_author(ISBN, author_id)
= author(id, PCDATA_id)
® PCDATA(id, value)
< Why not just “inline” the string value inside book?
= book_author(ISBN, author PCDATA _value)
= PCDATA table no longer stores author values

More general inlining

< As long as we know the structure of an element and its
number of children (and recursively for all children), we can

inline this element where it appears

<book ISBN=".">..
<publisher>
<name>..</name><address>..</address>
</publisher>..
</book>

< With no inlining at all < With inlining

book(ISBN, publisher_id) book(ISBN,

publisher(id, name_id, address_id) publisher_name_PCDATA_value,
name(id, PCDATA_id) publisher_addyress PCDATA_value),
address(id, PCDATA_id)

Queries

< book(ISBN, price, title, publisher, year),
book_author(ISBN, author), book_section(ISBN, section_id),
section(id, title, text), section_section(id, section_pos, section_id)
<« [/title

= (SELECT title FROM book) UNION ALL
(SELECT title FROM section);

« //section/title These queries only work
= SELECT title FROM section; for the given DTD
% //bibliography/book[author="Abiteboul"]/@price

= SELECT price FROM book, book_author
WHERE book.ISBN = book_author.ISBN AND author = 'Abiteboul’;

« //book//title

= (SELECT title FROM book) UNION ALL
(SELECT title FROM section)

28

Pros and cons of inlining

< Not always applicable
= * and +, recursive schema (e.g., section)

% Fewer joins

< More “scattering” (e.g., there is no longer any table
containing all titles; author information is scattered
across book, section, etc.)

@ Heuristic: do not inline elements that can be shared

Result restructuring

% Simple results are fine
= Each tuple returned by SQL gets converted to an element
< Simple grouping is fine (e.g., books with multiple authors)
= Tuples can be returned by SQL in sorted order; adjacent tuples are
grouped into an element
< Complex results are problematic (e.g., books with multiple
authors and multiple references)

One SQL query can only return a single table, whose columns
cannot store sets

Option 1: return one table with all combinations of authors and
references — bad

Option 2: return two tables, one with authors and the other with
references — join is done as post processing

Comparison of approaches

% Schema-oblivious
® Flexible and adaptable; no DTD needed
= Queries are easy to formulate
® Translation from Xpath/XQuery can be easily automated
= Queries involve lots of join and are expensive
< Schema-aware
= Less flexible and adaptable
® Need to know DTD to design the relational schema
= Query formulation requires knowing DTD and schema
= Queries are more efficient

= XQuery is tougher to formulate because of result restructuring

