XML Indexing I

CPS 216

Advanced Database Systems

Announcements (March 25)

% Course project milestone 2 due next Tuesday
< Homework #3 due on April 6
+ Recitation session this Friday
= XML API’s
< No classes next week

® Make up during reading period

XML indexing overview

% It is a jungle out there
= Different representation scheme lead to different indexes

= Will we ever find the “One Tree” that rules them all?
% Building blocks: B -trees, inverted lists, tries, etc.
< Indexes for node/edge-based representations (graph)
< Indexes for interval-based representations (tree)
< Indexes for path-based representations (tree)
< Indexes for sequence-based representations (tree)

% Structural indexes (graph)

Warm-up: indexes in Lore (review)

% Label index: (child, label) — parent

= BT -tree

< Edge index: label — (parent, child)
= Bt_tree

% Value index: (value, label) — Node
= Bt_tree

% Path index: path expression — node

= Structural index: DataGuide (more in next lecture)

Niagara: data manager index

< A combination of node/edge-based and interval-
based representations using B*-tree

Leuf Entry ..
Docl} | ElementlD | TermiD | ®ID
s 3 %

[[es
— |‘ 2
Primary key (XKey) |
ElementID is /eft I
|

Niagara: index manager index

+ Essentially an inverted-list index for tag names with
entries in each list sorted by XKey

A sorted list,

or a sorted list
Leaf Emry [. .
with a sparse index,

or a Bf-tree

Inverted List

(left, righe, level)

Start, End, Level | [il |
(45,46, 7,4) (10, 11,4112, 13, 4) (14,15, 4)

XR-tree

Stands for XML Region Tree (Jiang et al., ICDE 2002)

< Intended for interval-based representation

+ Based on B*-tree

+ Nice property: given an element, all its
ancestors/descendents can be identified very
efficiently

XR-tree structure

< Backbone is a B*-tree with /¢ as the index key
% Each internal index node » maintains a stab list SL(»)
" An element is in SL(») if it is
* “Stabbed” by at least one key in 7, i.e., that key in contained in the
element’s (eft, right)
* Not stabbed by any key in #’s ancestor
< For each key within an internal node #, also store
(first_left, first_right), from the first element in SL(z) stabbed
by this key but not by any previous keys in 7
" Example: (5, ¢,) for &; (54, ¢4) for £; (nil, nil) for £,

K o 3 ke
T €o H
3 ;
e
9
The backbone B*-tree
Iz [[
e I - [[T 7 [
2,15, no 20, 75, yes 25, 30, no 46, 47, yes 80,91, no
8, 12, no 22, 35, yes 40, 65, yes 50, 55, no 85, 90, no
10,11, no [\~ - Ne_~] 45, 60, yes _~ - N~ -

% Entries in leaf index nodes have the form
(left, right, InStabList, pointer_to_record)

= InStabList is set to true iff the entry can be found some
stab list

10

Stab lists

(20,75), (22, 35)

/H 19 \\{ - e (48 [[7 NI .fw0.65. 560, 0647)
2, 15.n0 20, 75, yes 25,30, no 46,47, yes
8,12,n0 22,35, yes 40,65, yes
10,11, no - 45, 60, yes 2 - <

% Each internal node maintains a stab list

% An element can be in at most one stab list

< Some internal nodes may have empty stab lists (nil)

(first_left, first_right) fields

o[(20,75), (22, 35)

(e m]] - Th.. []46.40.65]] 79.ni nil [\ {(#0,69), @5, 60), 45, 47)

2,15, n0 [20.75. yes | [25.30.n0 | [46,47, yes | 80,91, no

22,35, yes 40, 65, yes 50, 55, no 85, 90, no
10,11, no 7 - 45, 60, yes - -

< Note that keys 19, 79 have nil (first_left, first_right)

XR-tree insertion example

% Insert (23, 24)

stabbed by key 24

start ——— [] [- Tk o((2075). (22, 35)) €— (23,34)

‘4checking for stabbi

(e [[- Them [[46.40.65 [70.nini \

2,15, n0 20,75, yes. 25, 30, no 46,47, yes 80, 91, no
8,12, no 22 35, yes 40, 65, yes 50, 55, no 85, 90, no
10,11, no 23,34,yes 7| 485, 60, yes - -

Looking up descendents

+ Basically a range query over the backbone B*-tree

< Example: descendents of (21, 74)
start 7 Haazos[] - [h o(2075) (22.35))

[renin][- Tloem L] 46.40.65 [78, nilni \

2,15, no 20,75, yes
8.12,n0 22,35, yes |©
10.11.n0 v B

~_ 7 — o~~~

Looking up ancestors

% Go down the tree and check stab lists and the leaf
< Example: ancestors of (51, 52)

= Just look for all intervals stabbed by 51

= Need to check 52?

= Need to check stab lists on other paths?

start ——> [Taamn]| -~ 5 (mr @)
©

. N — S
(e[[- Them L] 460,65 [78.nini \
® ©
2.15.n0 20,75, yes
8. 12, no 22, 35, yes
10.11.n0 .

Note that leaves with “yes” are ignored Stop.

Stab list checking in more detail

% Visually, the stab list for an internal index node can be seen
as stacks of intervals, one stack for each key in the node

kq 2 3 ks

S ——e; S3

—es 5 ey
s;—ie; i S5 ——

es s~

€6

 If left falls in between £, and 4, |, only need to check from
the first to the (7+ 1)-th stack (why?)

< For each stack, check bottom-up, and stop whenever the
interval is no longer stabbed by /eff (why?)

& (start_left, start_end) ensures that no stack is checked
unnecessarily

Performance of XR-tree

+ Space: linear in the size of the XML document
< Time

® hee: BT -tree height; R: result size; B: block size

tre

= Looking up descendents: O(b,,..+R/B) in the worst case

tree

® Looking up ancestors: O(b, ..+ R) in the worst case

tree

® Loss of 1/B factor is worrisome

* R in this case can be up to A, the height of the XML tree

xml>

= Insert/delete: O(h, ..+ ¢), amortized

tree

Discussion on XR-tree

% Plain B -tree works fine for descendents

 Lots of machineries just to find all ancestors
® Maintaining back pointers allow ancestors to be retrieved

in b, I/O’s, matching the bound for XR-tree!

¢ Perhaps XR-tree works better on the average case?

= It should be possible to answer stabbing queries in
O(h,,..tR/B) time and beat XR-tree and back pointers,
even with arbitrary intervals

tree

