XML Indexing I

CPS 216

Advanced Database Systems

Announcements (March 25)

< Course project milestone 2 due next Tuesday
< Homework #3 due on April 6
% Recitation session this Friday
= XML API’s
< No classes next week

= Make up during reading period

XML indexing overview

% It is a jungle out there
= Different representation scheme lead to different indexes

= Will we ever find the “One Tree” that rules them all?
% Building blocks: B -trees, inverted lists, tries, etc.
< Indexes for node/edge-based representations (graph)
% Indexes for interval-based representations (tree)
% Indexes for path-based representations (tree)
< Indexes for sequence-based representations (tree)

% Structural indexes (graph)

Warm-up: indexes in Lore (review)

% Label index: (child, label) — parent
= Bt-tree

< Edge index: label — (parent, child)
= Bt-tree

% Value index: (value, label) — Node
= Bt-tree

< Path index: path expression — node

= Structural index: DataGuide (more in next lecture)

Niagara: data manager index

< A combination of node/edge-based and interval-
based representations using B*-tree

Loaf Entry ..
DoclDd | ElementlD | TermiD | Rin
+ z) .

(S —
Primary key (XKey)
ElementID is /eft

83 Payload

{ | End, Level | Puylosd
s

|

|

|

Niagara: index manager index

< Essentially an inverted-list index for tag names with
entries in each list sorted by XKey

A sorted list,

)) or a sorted list
Leaf Envry [ol i i
0, Doel: (11, 4) with a sparse index,

A | w [. or a Bf-tree

Py b
; |
Inverted List |
1 4 (efe, right, lml)\'

Start, End, Level | [i |
(4,5, 4)(6, 7, 4) (10, 11,43 (12,13, 4) (14,15, 4)

XR-tree

Stands for XML Region Tree (Jiang et al., ICDE 2002)

< Intended for interval-based representation

+ Based on B*-tree

+ Nice property: given an element, all its
ancestors/descendents can be identified very
efficiently

XR-tree structure

% Backbone is a BT-tree with /eff as the index key
% Each internal index node » maintains a stab list SL(x)
= An element is in SL(») if it is
* “Stabbed” by at least one key in #, i.e., that key in contained in the
element’s (left, right)
* Not stabbed by any key in #’s ancestor
% For each key within an internal node 7, also store
(first_left, first_right), from the first element in SL(») stabbed
by this key but not by any previous keys in
= Example: (s, ¢)) for £; (54, e4) for £; (nil, nil) for £

ki 2

es ssTes

The backbone B -tree

ANED X 0 [[7 [
2,15.n0 20,75, yes 25, 30, no 46,47, yes 80,91, no
8,12, no 22, 35, yes 40, 65, yes 50, 55, no 85, 90, no
10,11, n0 [N_~| - N_~] 45, 60, yes _~ - NeA -

< Entries in leaf index nodes have the form
(left, right, InStabList, pointer_to_record)

= InStabList is set to true iff the entry can be found some
stab list

10

Stab lists
H o2e I - [B[eomezm)

e u T Thew [% T % Th Jwwwmma)

2,15, no \2075yes\ [25.30.n0 | [46.47. yes | ['80.91,n0 |
8.12.n0 22,35, yes [40,65, yes | \ 50,55, no | | 85.90. 1o |
10,11,n0 45,60, yes [__A N -]

% Each internal node maintains a stab list
% An element can be in at most one stab list

% Some internal nodes may have empty stab lists (nil)

(first_left, first_right) fields
Hae03][- [

H19,n||,n||H - Them H4s4o 65| 79.nll, nll\
2,15, no 20 75, yes 25‘ 30, no 46,47, yes 80,91, no
22,35, yes [40, 65, yes | 50,55, n0 85,90, n0
45,60, yes L - -

< Note that keys 19, 79 have nil (first_left, first_right)

XR-tree insertion example

% Insert (23, 24)

stabbed by key 24

(2079 22.35)) 4— (23,34)

‘4{13(1(1115, for stabbin
HISn\Im\H - \h_MIIH4s4ns5H79m\nn Nj_m

2,15, no m, 75, yes 25, 30, no 45 47, yes 80, 91, no.
22,35, yes 40, 65, yes [50,55.n0 | [e00.00
10.11, no <[23,34,yes 45, 60, yes -

Looking up descendents

+ Basically a range query over the backbone B*-tree

< Example: descendents of (21, 74)
start 7 Haazos[] - [h o(2075) (22.35))

[renin][- Tloem L] 46.40.65 [78, nilni \

2,15, no 20,75, yes
8.12,n0 22,35, yes |©
10.11.n0 v B

~_ 7 — o~~~

Looking up ancestors

% Go down the tree and check stab lists and the leaf

< Example: ancestors of (51, 52)
= Just look for all intervals stabbed by 51
= Need to check 52?

® Need to check stab lists on other paths?

start —— [Tawn]] -~ b J(am@s)
©

5 A —
[Tenn [- Them []4640.65 [78 nini ‘
© 0O
2 15.n0 20,75, yos [25.30.n0 | [46.47, yes | 80,91, no |
8.12,n0 [40. 65, yes | |’50.55.n0 |@ [85.90.n0 |
10.11.n0 B 445,60, yes N |
Note that leaves with “yes” are ignored Stop.

Stab list checking in more detail

% Visually, the stab list for an internal index node can be seen
as stacks of intervals, one stack for each key in the node

ky 2 3 K

—e; S e s e

es SgT T €p

< If left falls in between £; and £; , |, only need to check from
the first to the (7+1)-th stack (why?)

 For each stack, check bottom-up, and stop whenever the
interval is no longer stabbed by /ef (why?)

< (start_left, start_end) ensures that no stack is checked
unnecessarily

Performance of XR-tree

% Space: linear in the size of the XML document
% Time
- b[r(‘(‘:

= Looking up descendents: O(}

B*-tree height; R: result size; B: block size

+R/B) in the worst case

tree

= Looking up ancestors: O(b,,..+R) in the worst case

tree
® Loss of 1/B factor is worrisome

* R in this case can be up to A, the height of the XML tree

= Insert/delete: O(h,. ..+ ¢), amortized

tree

xml>

Discussion on XR-tree

% Plain B -tree works fine for descendents

% Lots of machineries just to find all ancestors

= Maintaining back pointers allow ancestors to be retrieved
in b I/O’s, matching the bound for XR-tree!
¢ Perhaps XR-tree works better on the average case?

® It should be possible to answer stabbing queries in
O(h,...+R/B) time and beat XR-tree and back pointers,

tree
even with arbitrary intervals

