
1

XML Indexing I

CPS 216

Advanced Database Systems

2

Announcements (March 25)

Course project milestone 2 due next Tuesday

Homework #3 due on April 6

Recitation session this Friday
XML API’s

No classes next week
Make up during reading period

3

XML indexing overview

It is a jungle out there
Different representation scheme lead to different indexes

Will we ever find the “One Tree” that rules them all?

Building blocks: B+-trees, inverted lists, tries, etc.

Indexes for node/edge-based representations (graph)

Indexes for interval-based representations (tree)

Indexes for path-based representations (tree)

Indexes for sequence-based representations (tree)

Structural indexes (graph)

4

Warm-up: indexes in Lore (review)

Label index: (child, label) → parent
B+-tree

Edge index: label → (parent, child)
B+-tree

Value index: (value, label) → Node
B+-tree

Path index: path expression → node
Structural index: DataGuide (more in next lecture)

5

Niagara: data manager index

A combination of node/edge-based and interval-
based representations using B+-tree

Primary key (XKey)
ElementID is left

6

Niagara: index manager index

Essentially an inverted-list index for tag names with 
entries in each list sorted by XKey

(left, right, level)

A sorted list,
or a sorted list
with a sparse index,
or a B+-tree



2

7

XR-tree

Stands for XML Region Tree (Jiang et al., ICDE 2002)

Intended for interval-based representation

Based on B+-tree

Nice property: given an element, all its 
ancestors/descendents can be identified very 
efficiently

8

XR-tree structure
Backbone is a B+-tree with left as the index key
Each internal index node n maintains a stab list SL(n)

An element is in SL(n) if it is
• “Stabbed” by at least one key in n, i.e., that key in contained in the 

element’s (left, right)
• Not stabbed by any key in n’s ancestor

For each key within an internal node n, also store
(first_left, first_right), from the first element in SL(n) stabbed 
by this key but not by any previous keys in n

Example: (s0, e0) for k0; (s4, e4) for k2; (nil, nil) for k3

k0 k1 k3k2

s0

s1

s2

s3

s6

k4

e0

e2

e1 e3 s4 e4

s5 e5 e6

9

The backbone B+-tree

Entries in leaf index nodes have the form
(left, right, InStabList, pointer_to_record)

InStabList is set to true iff the entry can be found some 
stab list

19 - 46 79

24 - -

2, 15, no

8, 12, no

10 ,11, no

20, 75, yes

22, 35, yes

-

25, 30, no

40, 65, yes

45, 60, yes

46, 47, yes

50, 55, no

-

80, 91, no

85, 90, no

-

10

Stab lists

Each internal node maintains a stab list

An element can be in at most one stab list

Some internal nodes may have empty stab lists (nil)

19 - 46 79

24 - - (20,75), (22, 35)

(40, 65), (45, 60), (46, 47)nil

2, 15, no

8, 12, no

10 ,11, no

20, 75, yes

22, 35, yes

-

25, 30, no

40, 65, yes

45, 60, yes

46, 47, yes

50, 55, no

-

80, 91, no

85, 90, no

-

11

(first_left, first_right) fields

Note that keys 19, 79 have nil (first_left, first_right)

19, nil, nil - 46, 40, 65 79, nil, nil

24, 20,75 - - (20,75), (22, 35)

(40, 65), (45, 60), (46, 47)nil

2, 15, no

8, 12, no

10 ,11, no

20, 75, yes

22, 35, yes

-

25, 30, no

40, 65, yes

45, 60, yes

46, 47, yes

50, 55, no

-

80, 91, no

85, 90, no

-

12

XR-tree insertion example

Insert (23, 24)

19, nil, nil - 46, 40, 65 79, nil, nil

24, 20,75 - - (20,75), (22, 35)

(40, 65), (45, 60), (46, 47)nil

2, 15, no

8, 12, no

10 ,11, no

20, 75, yes

22, 35, yes

-

25, 30, no

40, 65, yes

45, 60, yes

46, 47, yes

50, 55, no

-

80, 91, no

85, 90, no

-

stabbed by key 24

(23,34)

no checking for stabbing

23,34,yes

start



3

13

Looking up descendents

Basically a range query over the backbone B+-tree

Example: descendents of (21, 74)

19, nil, nil - 46, 40, 65 79, nil, nil

24, 20,75 - - (20,75), (22, 35)

(40, 65), (45, 60), (46, 47)nil

2, 15, no

8, 12, no

10 ,11, no

20, 75, yes

22, 35, yes

-

25, 30, no

40, 65, yes

45, 60, yes

46, 47, yes

50, 55, no

-

80, 91, no

85, 90, no

-

start

14

Looking up ancestors

Go down the tree and check stab lists and the leaf

Example: ancestors of (51, 52)
Just look for all intervals stabbed by 51

Need to check 52?

Need to check stab lists on other paths?

19, nil, nil - 46, 40, 65 79, nil, nil

24, 20,75 - - (20,75), (22, 35)

(40, 65), (45, 60), (46, 47)nil

2, 15, no

8, 12, no

10 ,11, no

20, 75, yes

22, 35, yes

-

25, 30, no

40, 65, yes

45, 60, yes

46, 47, yes

50, 55, no

-

80, 91, no

85, 90, no

-

start

Stop.Note that leaves with “yes” are ignored

15

Stab list checking in more detail
Visually, the stab list for an internal index node can be seen 
as stacks of intervals, one stack for each key in the node

If left falls in between ki and ki+1, only need to check from 
the first to the (i+1)-th stack (why?)
For each stack, check bottom-up, and stop whenever the 
interval is no longer stabbed by left (why?)
(start_left, start_end) ensures that no stack is checked 
unnecessarily

k0 k1 k3k2

s0

s1

s2

s3

s6

k4

e0

e2

e1 e3 s4 e4

s5 e5 e6

16

Performance of XR-tree 

Space: linear in the size of the XML document

Time
htree: B+-tree height; R: result size; B: block size

Looking up descendents: O(htree+R/B) in the worst case

Looking up ancestors: O(htree+R) in the worst case
• Loss of 1/B factor is worrisome

•R in this case can be up to hxml, the height of the XML tree

Insert/delete: O(htree+ c), amortized

17

Discussion on XR-tree

Plain B+-tree works fine for descendents

Lots of machineries just to find all ancestors
Maintaining back pointers allow ancestors to be retrieved 
in hxml I/O’s, matching the bound for XR-tree!

• Perhaps XR-tree works better on the average case?

It should be possible to answer stabbing queries in 
O(htree+R/B) time and beat XR-tree and back pointers, 
even with arbitrary intervals


