
1

XML Indexing II

CPS 216

Advanced Database Systems

2

Announcements (April 6)

Welcome back!

Homework #3 due tonight

3

XML indexing overview (review)

It is a jungle out there
Different representation scheme lead to different indexes

Will we ever find the “One Tree” that rules them all?

Building blocks: B+-trees, inverted lists, tries, etc.

Indexes for node/edge-based representations (graph)

Indexes for interval-based representations (tree)

Indexes for path-based representations (tree)

Indexes for sequence-based representations (tree)

Structural indexes (graph)

2

4

Index Fabric: a path-based index
Cooper et al. “A Fast Index for Semistructured Data.” VLDB 2001

Use a label-path encoding for XML
Each element is associated with a sequence of labels on
the path from the root (e.g., /Invoice/Buyer/Name/ABC Corp.)

Encode the label path as a string (e.g., /Invoice/Buyer/Name
→ αβδ)

Index all label paths in a Patricia trie
And try to make the trie balanced and I/O-efficient

5

Example of label paths in Index Fabric

αβδ ABC Corp.

αβγ 123 ABC Way

απγ 17 Main St.

απδ Goods Inc.

αχε widget

αχε thingy

αχε jobber

α

β

δ γ

π

δ γ

χ

ε ε ε

Invoice

Buyer Seller Itemlist

Name Address Item

ABC Corp. 123 ABC Way Goods Inc. 17 Main
St.

widget thingy jobber
Name Address Item Item

6

Balancing Patricia trie in Index Fabric

Recall that Patricia trie indexes first point of
difference between keys

Divide trie into blocks

Build another layer g c

r w

0

22

corn cow

a

2
grass

5

e

b t

greenbeans greentea

g
0

2
e

3

7

Searching Patricia trie in Index Fabric

Start searching in the root layer

One block access per layer

Example: “greenbeans”
g c

r w

0

22

corn cow

a

2
grass

5

e

b t

greenbeans greentea

g
0

2
e

greenbeans

greenbeans

greenbeans

8

Refined paths in Index Fabric

Queries supported by Index Fabric so far:
Label paths from the root (e.g., /Invoice/Buyer/Name/)
How about //Buyer/Name, or //Buyer/Name|Address?

Refined paths: frequent queries
Just invent labels for these queries and index them in the
same Patricia trie
Example: find invoices where X sold to Y

Extra refined paths → more space required

τ X Y
τ ABC Corp. Goods Inc.

τ XYZ Corp. Acme Inc.

9

ViST: a sequence-based index
Wang et al. “ViST: A Dynamic Index Method for Querying XML Data

by Tree Structures.” SIGMOD 2003

Use a sequence-based encoding for XML

Turn twig queries to subsequence matches

Index sequences in a virtual trie using interval-based
encoding

4

10

Sequence representation of XML

A sequence of (symbol, prefix) pairs, in depth-first order:
(P, ε), (S, P), (I, PS), (N, PSI), (v1, PSIN), (M, PSI), (v2, PSIM), (I,
PSI), (M, PSII), (v3, PSIIM), (I, PS), (N, PSI), (v4, PSIN), (L, PS),
(v5, PSL), (N, PS), (v6, PSN), (B, P), (L, PB), (v7, PBL), (N, PB),
(v8, PBN)

What is the worst-case storage requirement?
Would listing symbols in depth-first order be sufficient?

11

Sequence representation of twigs

Twigs can be represented sequences as well

12

Matching twigs as sequences

Data: (P, ε), (S, P), (I, PS), (N, PSI), (v1, PSIN), (M, PSI), (v2, PSIM),
(I, PSI), (M, PSII), (v3, PSIIM), (I, PS), (N, PSI), (v4, PSIN), (L, PS),
(v5, PSL), (N, PS), (v6, PSN), (B, P), (L, PB), (v7, PBL), (N, PB), (v8,
PBN)
Query (Boston seller New York buyer): (P, ε), (S, P), (L, PS), (v5,
PSL), (B, P), (L, PB), (v7, PBL)
Find a (non-contiguous) subsequence of data that matches the query

Data: (P, ε), (S, P), (I, PS), (N, PSI), (v1, PSIN), (M, PSI), (v2, PSIM),
(I, PSI), (M, PSII), (v3, PSIIM), (I, PS), (N, PSI), (v4, PSIN), (L, PS),
(v5, PSL), (N, PS), (v6, PSN), (B, P), (L, PB), (v7, PBL), (N, PB), (v8,
PBN)

5

13

False alarms

/P/Q[T]/S
Match sequences for /P/Q[T]/S and /P/[Q/T]/Q/S

Compute the difference between the answers

But what if a document exhibit both structures?

14

Indexing sequences with a trie

Just insert sequences into a trie

Search the trie for subsequences matching the query
Expensive because
subsequences do not need
to be contiguous

15

“Virtual trie” idea

Use (left, size) to encode trie nodes
size = right – left

Supports efficient “skipping”

Index in a regular B+-tree

No need to store the trie itself

6

16

ViST structures
D-Ancestor B+-tree indexes trie nodes by (symbol, prefix)

Facilitates prefix matching (checking for ancestor-descendent
relationships in documents)

Leaf nodes point to S-Ancestor B+-trees, which further
index nodes by (left, size)

Facilitates skipping in the trie
(checking for ancestor-descendent
relationships in the trie)

Subsequence matching →
repeated index lookups

17

Lore’s DataGuide: a structural index
Goldman & Widom. “DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases.” VLDB, 1997

Given an XML data graph G, a DataGuide is an index
graph I with the following properties

Every label path in G also occurs in I
• Complete coverage

Every label path in I also occurs in G
• Accurate coverage

Every label path in I (starting from a particular object) is unique
(i.e., I is a DFA)

• Efficient search: a label path of length n traverses n edges
and ends at one node

Each index node in I points to its extent: a set of data nodes in G
• Label path query on G→ label path query on I

18

Strong DataGuide
Let p, p’ be two label path expressions and G a graph; define
p ≡G p’ if p(G) = p’(G)

That is, p and p’ are indistinguishable on G

I is a strong DataGuide for a database G if the equivalence
relations ≡I and ≡G are the same

Example
I1 is strong; I2 is not
A.C(G) = { 5 }, B.C(G) = { 6, 7 }

• Not equal

A.C(I2) = { 20 }, B.C(I2) = { 20 }
• Equal

I1 I2G

7

19

Size of DataGuides

If G is a tree, then |I| · |G|
Linear construction time

In the worst case, the size of a strong DataGuide may be
exponential in |G| because of the DFA requirement

Relax the DFA requirement?

o1

o2 o3

o4 o5 o6

A A

B B B

B

B

20

NFA-based structural indexes

Defined using an equivalence relation (based on the
graph structure)

Each index node v corresponds to an equivalence class of
data nodes in G (denoted v.extent)

There is a edge from u to v in I iff there exists a edge
from a node in u.extent to a node in v.extent

|I| · |G| by definition because extents do not
overlap; however, the structure is no longer a DFA

21

1-index
Milo & Suciu, “Index Structures for Path Expressions.” ICDT, 1997

“Perfect” equivalence relation: two data nodes are
equivalent iff they are not distinguishable by label path
expressions

That is, the sets of label path expressions that can reach them are
the same
Too expensive to compute in practice

1-index uses a less perfect equivalent relation, bisimilarity,
which is easier to compute

If two nodes are bisimilar, then they are not distinguishable by
label path expressions
The converse is not necessary true
May result in larger indexes

