XML Indexing II

CPS 216

Advanced Database Systems

Announcements (April 6)

< Welcome back!
< Homework #3 due tonight

XML indexing overview (review)

% It is a jungle out there
= Different representation scheme lead to different indexes

= Will we ever find the “One Tree” that rules them all?
% Building blocks: B -trees, inverted lists, tries, etc.
< Indexes for node/edge-based representations (graph)
% Indexes for interval-based representations (tree)
@ Indexes for path-based representations (tree)
= Indexes for sequence-based representations (tree)

@ Structural indexes (graph)

Index Fabric: a path-based index

Cooper et al. “A Fast Index for Semistructured Data.” VLDB 2001
% Use a label-path encoding for XML

= Each element is associated with a sequence of labels on
the path from the root (e.g., /Invoice/Buyer/Name/ABC Corp.)

= Encode the label path as a string (e.g., /Invoice/Buyer/Name
— af}o)
% Index all label paths in a Patricia trie

= And try to make the trie balanced and I/O-efficient

bl

Example of label paths in Index Fabric

(ttem
‘ABC Corp. ‘ ‘123 ABC Way H Goods Inc. ‘ 17 Main widget t)u.ngy jcbber

IuBS]AEc Corp. I |a1ry|17 Main St. | laxs[widget I laxs]jobber I

laB'yl 123 ABC Way I I(mSlGoods Inc. I laxsl thingy I

Balancing Patricia trie in Index Fabric

% Recall that Patricia trie indexes first point of
difference between keys

% Divide trie into blocks

+ Build another layer

0]
g
! “GraSS..CoLn —eoW-
e
greenbean greentea

Searching Patricia trie in Index Fabric

+ Start searching in the root layer

< One block access per layer

< Example: “greenbeans”

greenbeans

greenbeans gE tea

greenbeans

Refined paths in Index Fabric

% Queries supported by Index Fabric so far:
= Label paths from the root (e.g., /Invoice/Buyer/Name/)
= How about //Buyer/Name, or //Buyer/Name |Address?

% Refined paths: frequent queries

= Just invent labels for these queries and index them in the
same Patricia trie

= Example: find invoices where X sold to Y

‘ 1:‘ ABC Corp. ‘ Goods Inc. ‘

‘1:‘ XYZ Corp. ‘Acme Inc. ‘

@ Extra refined paths — more space required

ViST: a sequence-based index

Wang et al. “ViST: A Dynamic Index Method for Querying XML Data
by Tree Structures.” SIGMOD 2003

< Use a sequence-based encoding for XML

< Turn twig queries to subsequence matches

+ Index sequences in a virtual trie using interval-based
encoding

10

Sequence representation of XML

intel 6

< A sequence of (symbol, prefix) pairs, in depth-first order:

= (P,), (S, P), (I, PS), (N, PSI), (v, PSIN), (M, PSI), (z,, PSIM), (1,
PSI), (M, PSII), (v, PSIIM), (I, PS), (N, PSD), (v, PSIN), (L, PS),
(vs, PSL), (N, PS), (v5, PSN), (B, P), (L, PB), (5, PBL), (N, PB),
(v, PBN)

= What is the worst-case storage requirement?
@ Would listing symbols in depth-first order be sufficient?

Sequence representation of twigs

< Twigs can be represented sequences as well

Path Expression Structure- Encodedd Sequence

{Sedler fItem (Manu facturer (P.e)(S, P)(T, PS)(ML PST

| Low: = v [Ruyer|Loe = v7] (Poe)(5, P)E, PS){eg, PSL)(B, P){ L, PB){e;, PBL

(B, e)(L, Ps)(es, PeL)

Qi [Purchase] [Manu facturer = es) (P,e)(M, Pf)les. PIM)

Matching twigs as sequences

parts1 im (M) parts2 s

< Data: (P, &), (S, P), (I, PS), (N, PSI), (v,, PSIN), (M, PSI), (v,, PSIM),
(I, PSI), (M, PSII), (v;, PSIIM), (I, PS), (N, PSI), (v, PSIN), (L, PS),
(vs, PSL), (N, PS), (5, PSN), (B, P), (L, PB), (v;, PBL), (N, PB), (v,
PBN)

< Query (Boston seller New York buyer): (P, &), (S, P), (L, PS), (vs,
PSL), (B, P), (L, PB), (v;, PBL)

« Find a (non-contiguous) subsequence of data that matches the query

False alarms

" P

P

7N /N |
“K 0 Q Q

/N /\ S SVAN

r s u T 5 1 5
Docl Doc2 Query

D (P &b (0, PR, PORS, PO R, PHU.PR) T, PR)

D. = (P e (Qu Py (T, POHQ, P (S, PQ)

Q (PoepiQu Py(T, POYIS, POQ)

< [P/QITY/S
= Match sequences for /P/Q[TY/S and /P/{Q/TYQ/S
= Compute the difference between the answers

= But what if a document exhibits both structures?

Indexing sequences with a trie

% Just insert sequences into a trie
% Search the trie for subsequences matching the query

= Expensive because
subsequences do not need o
to be contiguous
ws

Docy 1 (Pe)(5 PYN.PS)ey. PEN)L PS) ey PEL

Doy @ (Pe)(B.P)L, PB){rs. PBL vi,Pem

@& ¢ (P.O)B.P)L,PB)irs. PBL

List of DocTds of A Tocunents
, vhose insertions end up ot this node

vz, B,

“Virtual trie” idea

< Use (left, size) to encode trie nodes
= size = right — left

= Supports efficient “skipping”

% Index in a regular B*-tree

e

% No need to store the trie itself

ViST structures

% D-Ancestor B -tree indexes trie nodes by (symbol, prefix)
= Facilitates prefix matching (checking for ancestor-descendent
relationships in documents)
% Leaf nodes point to S-Ancestor B*-trees, which further
index nodes by (/ef?, size)
= Facilitates skipping in the trie
(checking for ancestor-descendent
relationships in the trie)
< Subsequence matching —
repeated index lookups

O Arcestor BeTiee S-Anceizsc BaTores

Lore’s DataGuide: a structural index

Goldman & Widom. “DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases.” VLDB, 1997
< Given an XML data graph G, a DataGuide is an index
graph I with the following properties
= Every label path in G also occurs in I
* Complete coverage
= Every label path in I also occurs in G
* Accurate coverage
= Every label path in I (starting from a particular object) is unique
(i.e., I is a DFA)

* Efficient search: a label path of length 7 traverses 7 edges
and ends at one node

= Each index node in I points to its extent: a set of data nodes in G
* Label path query on G — label path query on I

Strong DataGuide

< Let p, p’ be two label path expressions and G a graph; define
P =cp ifp(G) = p(G)
® That is, p and p’ are indistinguishable on G
% I is a strong DataGuide for a database G if the equivalence
relations =; and =¢ are the same

1
< Example ®
= [, is strong; I, is not ‘.;‘
" ACG) ={5},B.CG) =1{67} ¥
* Not equal p
" ACUI)={20},B.Cl,)={20}
* Equal

Size of DataGuides

<+ If G is a tree, then |I| < |G|
® Linear construction time

% In the worst case, the size of a strong DataGuide may be

exponential in |G| because of the DFA requirement
0l

02 03
04 45 B 06

@ Relax the DFA requirement?

% Defined using an equivalence relation (based on the graph
structure)

= Each index node v corresponds to an equivalence class of data
nodes in G (denoted v.extent)

® There is a edge from # to v in I iff there exists a edge from a node
in z.extent to a node in v.extent
= |I| < |G| by definition because extents do not overlap;
however, the structure is no longer a DFA

1-index

Milo & Suciu, “Index Structures for Path Expressions.” ICDT, 1997
< “Perfect” equivalence relation: two data nodes are
equivalent iff they are not distinguishable by label path
expressions

® That is, the sets of label path expressions that can reach them are
the same

® Too expensive to compute in practice
% 1-index uses a less perfect equivalent relation, bisimilarity,
which is easier to compute

= If two nodes are bisimilar, then they are not distinguishable by
label path expressions

= The converse is not necessary true
® May result in larger indexes

22

1-index construction

{3,6,8} director

“.7.9) name—(4,7,9) 7.9)
Data graph Initialize Split using movie{2} Split using director{3}
+ Initialize the index
® Data nodes with the same label go into the same index node
% Pick an index node # to apply a sp/it operation

= For each index node v, split it into », and v,
(if both have non-empty extents)
® v, .extent contains data nodes in v.extent that are children of #.extent

® v,.extent contains the rest of v.extent

< Repeat sp/it until there is no more change to the index

