Part I

CPS 216

Query Optimization

Advanced Database Systems

Announcements (April 8)

% Reading assignments for next week

= Selinger et al. “Access Path Selection in a Relational
Database Management System.” SIGMOD 1979

® Joannidis and Kang. “Randomized Algorithms for
Optimizing Large Join Queries.” SIGMOD 1990

< Homework #4 (short) will be assigned next
Tuesday and due the following Tuesday

% Final exam in 18 days (Monday, April 26)

A query’s trip through the DBMS

()
SFW),
(selegt-list) | where-list)
(from-list)
" (table) (table) A/N \D

Enroll

Course
PROJECT (title, SID)
1
MERGE-JOIN (CID)
7

SORT (CID)
|
SCAN (Enroll)

SCAN (Course)

SOL query

Parser

|

Parse tree

Logical plan

Query optimizer

Physical plan

Query execution engine

Result

lil

X
~N
Enﬁl[Course

SELECT title, SID

FROM Enrol1, Course

WHERE Enrol1.CID =
Course.CID;

Thite, SID
ol—Ema/Z,CID = Course.CID)|

Parsing & validation

% Parser: SQL — parse tree
® Good old lex & yacc
= Detect and reject syntax errors
% Validator: parse tree — logical plan

® Detect and reject semantic errors
* Nonexistent tables/views/columns

* Type mismatches (e.g., AVG(name), name + GPA, Student
UNION Enroll)

= Wildcard (SELECT *) and view expansion

= Use information stored in system catalog tables (contains
all metadata/schema information)

Logical plan

< A tree whose nodes are logical operators
= Often a tree of relational algebra operators
= DB2 uses QGM (Query Graph Model)

< There are many equivalent logical plans

7|rtil/e
(lj-Stuzlem.ﬂmne:“Bart" A Student SID = Enroll SID A Enroll.CID = Course.CID
X by
N 3 title
xZ G An equivalent plan: D|<]Z <
sz” \Enm// \Enm//.CID = Conrse.CID
Course
SELECT Course.title > _
FROM Student, Enroll, Course ‘&”“JE”"SID = Enrll SID
WHERE Student.name = 'Bart' Enroll
AND Student.SID = Enrol1.SID o . A
AND Enrol1.CID = Course.CID; | name = “Bart
Student

Query optimization and execution

< Recall that a physical plan tells the DBMS query execution
engine how to execute the query

® One logical plan can have many possible physical plans (with
equivalent results, but different costs and assumptions)

PROJECT (title) PRO_}EICT (vitle)
1
INDEX-NESTED-{OOP-_]OIN (CID) MERGE-JOIN (CID)
N

Index on Course(CID)

SORT,(CID) SCAN (Course)
INDEX-NESTE)-LOOP-JOIN (SID)

MERGE-JOIN QID)
Index on Enroll(SID)
« .. SORT (SID)
INDEX-SCAN (zame = “Bart”) FILTER (#ame = “Bart”)
1 1 SCAN (Enroll)
Index on Student(name) SCAN (Student)

< Query optimizer: one logical plan — “best” physical plan
< Query execution engine: physical plan — results

Query optimization

< Conceptually
= Consider a space of possible plans (next)
= Estimate costs of plans in the search space (next Tuesday)
= Search through the space for the “best” plan (next Thursday)
< Often the goal is not picking the absolute optimum, but
instead avoiding the horrible ones

/ Any of these will do
—4+OCO-004 O-O O—C0——0—
1second 1 minute 1 hour

Plan enumeration in relational algebra

< Apply relational algebra equivalences

= Join reordering: X and > are associative and
commutative (except when column ordering is
considered, but that is unimportant)

ANVANEVANE

> >

NN

More relational algebra equivalences

% Convert 0,-X to/from > 0, (R XS) = R4, S
+ Merge/split 0’s: 0,,,(0,, R) = 0, 1 p R
% Merge/split 7’s: 7, (7, R) = m, R, where L1 C L2
% Push down/pull up o:
Oy ppr g RXS) = (0, R) 4, (0, 9), where
= pris a predicate involving only R columns

pr

= ps is a predicate involving only § columns
=) is a predicate involving both R and § columns
% Push down 7: 7, (0, R) = m; (0, (m, 1, R)), where
= L’ is the set of columns referenced by p that are not in L
< Many more (seemingly trivial) equivalences. ..

® Can be systematically used to transform a plan to new ones

10

Relational query rewrite example

7|rriz/e

(lj-Student.ﬂame:“Bart" A Student SID = Enroll SID N\ Enroll.CID = Course.CID

X

X/ C\wme
7N
Student Enroll 7|rttt/e
G Enroll.CID = Course.CID @ o

Push down o S onvert g,-X to b,

Course

7|Ttit[e
(lj—St//denr.SlD = Enroll.SID

l><{Enml/.CID = Course.CID

X
3 C
Enroll guric
O Student name = “Bare” M&dmt.j”) = Enroll SID
1
Student Enroll

g

name = “Bart”
Student

Heuristics-based query optimization

% Start with a logical plan

+ Push selections/projections down as much as possible
= Why?
= Why not?
+ Join smaller relations first, and avoid cross product
= Why?
= Why not?
< Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

SQL query rewrite

< More complicated—subqueries and views divide a
query into nested “blocks”

® Processing each block separately forces particular join
methods and join order

® Even if the plan is optimal for each block, it may not be
optimal for the entire query

< Unnest query: convert subqueries/views to joins

@ Then we just deal with select-project-join queries

® Where the clean rules of relational algebra apply

DB2's QGM

Leung et al. “Query Rewrite Optimization Rules in IBM DB2 Universal
Database.”

< Query Graph Model: DB2’s logical plan language
= More high-level than relational algebra

< A graph of boxes
® Leaf boxes are tables

= The standard box is the SELECT box (actually a select-
project-join query block with optional duplicate
elimination)

= Other types include GROUPBY (aggregation), UNION,
INTERSECT, EXCEPT

= Can always add new types (e.g., OUTERJOIN)

More on QGM boxes

% Head: declarative description of the output
= Schema: list of output columns
= Property: Are output tuples DISTINCT?
< Body: how to compute the output
= Quantifiers: tuple variables that range over other boxes
* F: regular tuple variable, e.g., FROM R AS »
* E: existential quantifier, e.g., IN (subguery), or = ANY (subquery)
* A: universal quantifier, e.g., > ALL (subguery)
* S: scalar subquery, e.g., = (subguery)
® Quantifiers are connected a hypergraph
* Hyperedges are predicates
= Enforce DISTINCT, preserve duplicates, or permit duplicates?
* For the output of this box, and for each quantifier

QGM example

SELECT DISTINCT
ql.partno, ql.descr, g2.suppno

FROM inventory ql, quotations q2
H WHERE gl.partno = g2.partno

SELECT; AND gl.descr = 'engine’

. . AND g2.price <= ALL

ENFORCE] (SELECT g3.price
,." FROM quotations q3

WHERE g2.partno = g3.partno)

F(3) QuERY T

§ HEAD o]

partno [descr | wvlﬂul istnet ~TRUE 1

q2partno- g3 partno

§

QUANTIFEER il
g' =& COLUMNS.

=
it

Query rewrite in DB2

< Goal: make the logical plan as general as possible,
i.e., merge boxes
% Rule-based transformations on QGM
= Merge subqueries in FROM
= Convert E to F (e.g., IN/ANY subqueries to joins)
= Convert intersection to join
= Convert S to F (i.e., scalar subqueries to joins)
= Convert outerjoin to join

® Magic (i.e., correlated subqueries to joins)

E to F conversion

< SELECT DISTINCT name
FROM Student
WHERE SID = ANY (SELECT SID FROM Enroll);
< SELECT DISTINCT name
FROM Student, (SELECT SID FROM Enroll) t
WHERE Student.SID = t.SID;
(EtoF rule)
< SELECT DISTINCT name
FROM Student, Enroll
WHERE Student.SID = Enrol1.SID;
(SELMERGE rule)

Problem with duplicates

Same query, without DISTINCT
< SELECT name

FROM Student

WHERE SID = ANY (SELECT SID FROM Enroll);
< SELECT name

FROM Student, Enroll

WHERE Student.SID = Enrol1.SID;

A way of preserving duplicates

< SELECT name
FROM Student
WHERE SID = ANY (SELECT SID FROM Enroll);

Suppose that SID is a key of Student

< SELECT DISTINCT Student.SID, name
FROM Student, Enroll
WHERE Student.SID = Enrol1.SID;
(ADDKEYS rule)

% Then simply project out Student.SID

Another E to F trick

< Sometimes an ANY subquery can be turned into an
aggregate subquery without ANY, to improve performance
further

< SELECT * FROM Student sl
WHERE GPA > ANY
(SELECT GPA FROM Student s2
WHERE s2.name = 'Bart');

< SELECT * FROM Student sl
WHERE GPA >
(SELECT MIN(GPA) FROM Student s2
WHERE s2.name = 'Bart');

Does the same trick apply to ALL?

< SELECT * FROM Student sl
WHERE GPA > ALL
(SELECT GPA FROM Student s2
WHERE s2.name = 'Bart');

< SELECT * FROM Student sl
WHERE GPA >
(SELECT MAX(GPA) FROM Student s2
WHERE s2.name = 'Bart');

22

Correlated subqueries

< SELECT CID FROM Course
WHERE title LIKE 'CPS%'
AND min_enroll >
(SELECT COUNT(*) FROM Enroll
WHERE Enrol11.CID = Course.CID);

< Executing correlated subquery is expensive
® The subquery is evaluated once for every CPS course

@ Decorrelate!

COUNT bug

< SELECT CID FROM Course
WHERE title LIKE 'CPS%'
AND min_enroll > (SELECT COUNT(*) FROM Enroll
WHERE Enrol1.CID = Course.CID);

<« SELECT CID First compute the enrollment for all(?) courses

FROM Course, | (SELECT CID, COUNT(*) AS cnt
FROM Enroll GROUP BY CID) t
WHERE t.CID = Course.CID AND min_enroll > t.cnt
AND title LIKE 'CPS%';

Magic decorrelation

< Simple idea
= Process the outer query using other predicates
* To collect bindings for correlated variables in the subquery
= Evaluate the subquery using the bindings collected
® It is a join
* Once for the entire set of bindings
— Compared to once per binding in the naive approach
® Use the result of the subquery to refine the outer query
¢ Another join
< Name “magic” comes from a technique in recursive
processing of Datalog queries

Magic decorrelation example

< SELECT CID FROM Course
WHERE title LIKE 'CPS%'
AND min_enroll > (SELECT COUNT(*) FROM Enroll
WHERE Enrol11.CID = Course.CID);
< CREATE VIEW Supp_Course AS Process the outer query
SELECT * FROM Colrse WHERE title LIKE 'CPS5'5 wichout the subquery

CREATE VIEW Magic AS
SELECT DISTINCT CID FROM Supp_Course;

CREATE VIEW DS AS Evaluate the subquery
(SELECT Enrol1.CID, COUNT(*) AS cnt with bindings

FROM Magic, Enroll WHERE Magic.CID = Enrol1.CID

GROUP BY Enrol1.CID) UNION

(SELECT Magic.CID, 0 AS cnt FROM Magic

WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);

SELECT Supp_Course.CID FROM Supp_Course, DS Finally, refine
WHERE Supp_Course.CID = DS.CID the outer query
AND min_enroll > DS.cnt;

Collect bindings

26

Summary of query rewrite

< Break the artificial boundary between queries and
subqueries

< Combine as many query blocks as possible in a
select-project-join block, where the clean rules of
relational algebra apply

< Handle with care—extremely tricky with duplicates,
NULL’s, empty tables, and correlation

