
1

Query Optimization
Part III

CPS 216

Advanced Database Systems

2

Announcements (April 15)

Homework #4 due next Tuesday

Classes on both Tuesday and Thursday next week

Final exam on Monday, April 26
3 hours—no time pressure!

Open book, open notes

Comprehensive, but with emphasis on the second half of 
the course and materials exercised in homework

Project demo period: Tues./Wed. after the final
A sign-up sheet is circulating

Final report due before the demo

3

Review of the bigger picture

Query optimization

Consider a space of possible plans

Estimate costs of plans in the search space

Search through the space for the “best” plan (today)

Focus on select-project-join query blocks
Join ordering is the most important subproblem

4

Search space

“Bushy” plan example:

Search space is huge: 30240 bushy plans for a six-
table join
More if we consider:

Multiway joins
Different join methods
Placement of selection and projection operators

R2 R1 R3

R4 R5

5

Left-deep plans

Heuristic: consider only “left-deep” plans, in which only the 
left child can be a join

Tend to be better than plans of other shapes, because many join 
algorithms scan inner (right) input multiple times—you will not 
want it to be a complex subtree

How many left-deep plans are there for R1 L Rn?
Significantly fewer, but still lots— n! (720 for n = 6)

R2 R1

R3

R4

R5

6

A greedy algorithm
S1, …, Sn

Say selections have been pushed down; i.e., Si = σp Ri

Start with the pair Si, Sj with the smallest estimated size for
Si Sj

Repeat until no table is left:
Pick Sk from the remaining tables such that the join of Sk
and the current result yields an intermediate result of the 
smallest size

Current subplan

…, Sk, Sl, Sm, …
Remaining

tables
to be joined

Pick most efficient join method

Sk

Minimize expected size

Complexity?



2

7

Query optimization in System R

A.k.a. Selinger-style query optimization
The classic paper on query optimization (Selinger et al., 
SIGMOD 1979)

Basic ideas
Left-deep trees only 

Bottom-up generation of plans using dynamic 
programming

“Interesting orders”

8

Bottom-up plan generation
Observation 1: Once we have joined k tables together, the 
method of joining this result further with another table is 
independent of the previous join methods
Observation 2: Any subplan of an optimal plan must also 
be optimal (otherwise we could replace the subplan to get a 
better overall plan)
Not exactly accurate (next slide)

Bottom-up generation of optimal left-deep plans
Compute the optimal plans for joining k tables together

• Suboptimal plans are pruned

From these plans, derive optimal plans for joining k+1 tables

9

The need for “interesting order”

Example: R(A, B) S(A, C) T(A, D)

Best plan for R S: nested-loop join (beats sort-merge)

Best overall plan: sort-merge join R and S, and then sort-
merge join with T

Subplan of the optimal plan is not optimal!

Why?
The result of the sort-merge join of R and S is sorted on A

This is an interesting order that can be exploited by later 
processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, 
etc.)!

10

Dealing with interesting orders

When picking the best plan
Comparing their costs is not enough

• Plans are not totally ordered by cost anymore

Comparing interesting orders is also needed
• Plans are now partially ordered

• Plan X is better than plan Y if
– Cost of X is lower than Y
– Interesting orders produced by X subsume those produced by Y

Need to keep a set of optimal plans for joining every 
combination of k tables

At most one for each interesting order

11

System-R algorithm
Pass 1: Find the best single-table plans
Pass 2: Find the best two-table plans by considering each 
single-table plan (from Pass 1) as the outer input and every 
other table as the inner input
…
Pass k: Find the best k-table plans by considering each 
(k–1)-table plan (from Pass k–1) as the outer input and 
every other table as the inner input
…
Heuristics

Push selections and projections down
Process cross products at the end

12

Reasoning about predicates

SELECT * FROM R, S, T
WHERE R.A = S.A AND S.A = T.A;
Looks like a cross product between R and T

No join condition

But there is really a join between R and T
R.A = T.A is implied from the other two predicates

A good optimizer should be able to detect this case 
and consider the possibility of joining R with T first



3

13

System-R algorithm example
SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;

Primary keys/indexes
Student(SID), Enroll(CID, SID), Course(CID)

Ordered, secondary indexes
Student(age), Course(title)

14

Example: pass 1
Plans for {Student}

S1: Table scan, then filter (age < 10);
cost 100; result ordered by SID
S2: Index scan using condition (age < 10);
cost 5; result ordered by age

Plans for {Enroll}
E1: Table scan;
cost 1000; result ordered by CID, SID

Plans for {Course}
C1: Table scan, then filter (title LIKE ’%data%’);
cost 40; result ordered by CID
C2: Index scan with filter (title LIKE ’%data%’);
cost 60; result ordered by title

← interesting order

← not an interesting order

☻

☻

← interesting order
☻

← interesting order

← not an interesting order

☻

SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;

15

Example: pass 2

Plans for {Student, Enroll}
Extending best plans for {Student}

• From S1 (table scan, then filter (age < 10))
– Block-based nested loop join with Enroll; cost 1100

– Sort Enroll by SID, and merge join; cost 3100;
ordered by SID ← no longer an interesting order

– … …

• From S2 (index scan using condition (age < 10))
– Block-based nested loop join with Enroll; cost 1005

– … …

Extending best plans for {Enroll} … …

☻

SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;

16

Example: pass 2 continued

Plans for {Student, Course}
Ignore; it is a cross product

Plans for {Enroll, Course}
Extending best plans for {Course}

• From C1 (table scan, then filter (title LIKE ’%data%’))
– Merge join; cost 1040

– … …

Extending best plans for {Enroll} … …

☻

SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;

17

Example: pass 3

Finally, plans for {Student, Enroll, Course}
Extending best plans for {Student, Enroll}

• (INDEX-SCAN(Student) NLJ Enroll) NLJ FILTER(Course); 
cost …

• … …

Extending best plans for {Student, Course}
• None!

Extending best plans for {Enroll, Course}
• (FILTER(Course) SMJ Enroll) NLJ (INDEX-SCAN(Student)); 

cost …

• … …

☻

SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;

18

Considering bushy plans

Straightforward generalization:

Store all optimal 1-table, 2-table, …, and k-table 
plans

To find the optimal plan for k+1 tables
For every possible partition of these tables into two 
groups, find the best ways of joining the optimal plans 
for the two groups

Store the overall optimal plans



4

19

Optimizer “blow-up”

A 20-way join will easily choke an optimizer using 
the System-R algorithm

Solutions
Heuristics-based query optimization

Randomized query optimization (Ioannidis & Kang, 
SIGMOD 1990)

Genetic programming (PostgreSQL)

20

Search space revisited

Cost

Space of plans

Plan Transformations

Global optimum

Local optimum

21

Transformations

Relational algebra equivalences
(or query rewrite rules in general):

Join method choice: R method1S → R method2S
Join commutativity: R S → S R

Join associativity: (R S) T → R (S T)

Left join exchange: (R S) T → R (T S)

Right join exchange: R (S T) → S (R T)

Why the last two redundant rules? 
“Shortcuts” to avoid using the join commutativity rule, which does 
not change the cost of certain joins (example?)—creating plateaus 
in the plan space

22

Iterative improvement

Repeat until some stopping condition (e.g., time 
runs out):

Start with a random plan

Repeatedly go downhill (i.e., pick a neighbor with a 
lower cost randomly) to get to a local optimum

Return the smallest local optimum found

23

Simulated annealing

Start with a plan and an initial temperature

Repeat until temperature is 0:
Repeat until some equilibrium (e.g., a fixed number of 
iterations):

• Move to a random neighbor of the plan (an uphill move is 
allowed with probability e – ∆cost ⁄ temperature)

– Larger → smaller probability

– Lower temperature → smaller probability

Reduce temperature

Return the plan visited with the lowest cost

24

Two-phase optimization

Phase I: run iterative improvement for a while to 
find a good local optimum

Phase II: run simulated annealing with a low initial 
temperature to get more improvements

Why does this heuristic tend to work better than 
both iterative improvement and simulated 
annealing?



5

25

Shape of the cost function

An average local optimum 
has a much lower cost than 
an average plan

The average distance between 
a random state and a local 
optimum is long

There are lots of local optima

Many local optima are 
connected together through 
low-cost plans within short 
distances

Cost

Space of plans

Cup-shaped

26

Comparison of randomized algorithms

Iterative improvement
Too easily trapped in a local optimum

Too much work to restart

Simulated annealing
Too much time spent on high-cost plans

Two-phase
Phase I uses iterative improvement to get to the cup 
bottom quickly

Phase II uses simulated annealing to explore the cup 
bottom further


