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Query Optimization
Part III

CPS 216

Advanced Database Systems
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Announcements (April 15)

Homework #4 due next Tuesday

Classes on both Tuesday and Thursday next week

Final exam on Monday, April 26
3 hours—no time pressure!

Open book, open notes

Comprehensive, but with emphasis on the second half of 
the course and materials exercised in homework

Project demo period: Tues./Wed. after the final
A sign-up sheet is circulating

Final report due before the demo
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Review of the bigger picture

Query optimization

Consider a space of possible plans

Estimate costs of plans in the search space

Search through the space for the “best” plan (today)

Focus on select-project-join query blocks
Join ordering is the most important subproblem
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Search space

“Bushy” plan example:

Search space is huge: 30240 bushy plans for a six-
table join
More if we consider:

Multiway joins
Different join methods
Placement of selection and projection operators

R2 R1 R3

R4 R5
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Left-deep plans

Heuristic: consider only “left-deep” plans, in which only the 
left child can be a join

Tend to be better than plans of other shapes, because many join 
algorithms scan inner (right) input multiple times—you will not 
want it to be a complex subtree

How many left-deep plans are there for R1 L Rn?
Significantly fewer, but still lots— n! (720 for n = 6)

R2 R1

R3

R4

R5
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A greedy algorithm
S1, …, Sn

Say selections have been pushed down; i.e., Si = σp Ri

Start with the pair Si, Sj with the smallest estimated size for
Si Sj

Repeat until no table is left:
Pick Sk from the remaining tables such that the join of Sk
and the current result yields an intermediate result of the 
smallest size

Current subplan

…, Sk, Sl, Sm, …
Remaining

tables
to be joined

Pick most efficient join method

Sk

Minimize expected size

Complexity?
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Query optimization in System R

A.k.a. Selinger-style query optimization
The classic paper on query optimization (Selinger et al., 
SIGMOD 1979)

Basic ideas
Left-deep trees only 

Bottom-up generation of plans using dynamic 
programming

“Interesting orders”
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Bottom-up plan generation
Observation 1: Once we have joined k tables together, the 
method of joining this result further with another table is 
independent of the previous join methods
Observation 2: Any subplan of an optimal plan must also 
be optimal (otherwise we could replace the subplan to get a 
better overall plan)
Not exactly accurate (next slide)

Bottom-up generation of optimal left-deep plans
Compute the optimal plans for joining k tables together

• Suboptimal plans are pruned

From these plans, derive optimal plans for joining k+1 tables
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The need for “interesting order”

Example: R(A, B) S(A, C) T(A, D)

Best plan for R S: nested-loop join (beats sort-merge)

Best overall plan: sort-merge join R and S, and then sort-
merge join with T

Subplan of the optimal plan is not optimal!

Why?
The result of the sort-merge join of R and S is sorted on A

This is an interesting order that can be exploited by later 
processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, 
etc.)!
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Dealing with interesting orders

When picking the best plan
Comparing their costs is not enough

• Plans are not totally ordered by cost anymore

Comparing interesting orders is also needed
• Plans are now partially ordered

• Plan X is better than plan Y if
– Cost of X is lower than Y
– Interesting orders produced by X subsume those produced by Y

Need to keep a set of optimal plans for joining every 
combination of k tables

At most one for each interesting order
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System-R algorithm
Pass 1: Find the best single-table plans
Pass 2: Find the best two-table plans by considering each 
single-table plan (from Pass 1) as the outer input and every 
other table as the inner input
…
Pass k: Find the best k-table plans by considering each 
(k–1)-table plan (from Pass k–1) as the outer input and 
every other table as the inner input
…
Heuristics

Push selections and projections down
Process cross products at the end
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Reasoning about predicates

SELECT * FROM R, S, T
WHERE R.A = S.A AND S.A = T.A;
Looks like a cross product between R and T

No join condition

But there is really a join between R and T
R.A = T.A is implied from the other two predicates

A good optimizer should be able to detect this case 
and consider the possibility of joining R with T first
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System-R algorithm example
SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;

Primary keys/indexes
Student(SID), Enroll(CID, SID), Course(CID)

Ordered, secondary indexes
Student(age), Course(title)

14

Example: pass 1
Plans for {Student}

S1: Table scan, then filter (age < 10);
cost 100; result ordered by SID
S2: Index scan using condition (age < 10);
cost 5; result ordered by age

Plans for {Enroll}
E1: Table scan;
cost 1000; result ordered by CID, SID

Plans for {Course}
C1: Table scan, then filter (title LIKE ’%data%’);
cost 40; result ordered by CID
C2: Index scan with filter (title LIKE ’%data%’);
cost 60; result ordered by title

← interesting order

← not an interesting order

☻

☻

← interesting order
☻

← interesting order

← not an interesting order

☻

SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;
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Example: pass 2

Plans for {Student, Enroll}
Extending best plans for {Student}

• From S1 (table scan, then filter (age < 10))
– Block-based nested loop join with Enroll; cost 1100

– Sort Enroll by SID, and merge join; cost 3100;
ordered by SID ← no longer an interesting order

– … …

• From S2 (index scan using condition (age < 10))
– Block-based nested loop join with Enroll; cost 1005

– … …

Extending best plans for {Enroll} … …

☻

SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;
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Example: pass 2 continued

Plans for {Student, Course}
Ignore; it is a cross product

Plans for {Enroll, Course}
Extending best plans for {Course}

• From C1 (table scan, then filter (title LIKE ’%data%’))
– Merge join; cost 1040

– … …

Extending best plans for {Enroll} … …

☻

SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;
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Example: pass 3

Finally, plans for {Student, Enroll, Course}
Extending best plans for {Student, Enroll}

• (INDEX-SCAN(Student) NLJ Enroll) NLJ FILTER(Course); 
cost …

• … …

Extending best plans for {Student, Course}
• None!

Extending best plans for {Enroll, Course}
• (FILTER(Course) SMJ Enroll) NLJ (INDEX-SCAN(Student)); 

cost …

• … …

☻

SELECT SID, CID
FROM Student, Enroll, Course
WHERE Student.age < 10
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND Course.title LIKE ‘%data%’;
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Considering bushy plans

Straightforward generalization:

Store all optimal 1-table, 2-table, …, and k-table 
plans

To find the optimal plan for k+1 tables
For every possible partition of these tables into two 
groups, find the best ways of joining the optimal plans 
for the two groups

Store the overall optimal plans
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Optimizer “blow-up”

A 20-way join will easily choke an optimizer using 
the System-R algorithm

Solutions
Heuristics-based query optimization

Randomized query optimization (Ioannidis & Kang, 
SIGMOD 1990)

Genetic programming (PostgreSQL)
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Search space revisited

Cost

Space of plans

Plan Transformations

Global optimum

Local optimum
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Transformations

Relational algebra equivalences
(or query rewrite rules in general):

Join method choice: R method1S → R method2S
Join commutativity: R S → S R

Join associativity: (R S) T → R (S T)

Left join exchange: (R S) T → R (T S)

Right join exchange: R (S T) → S (R T)

Why the last two redundant rules? 
“Shortcuts” to avoid using the join commutativity rule, which does 
not change the cost of certain joins (example?)—creating plateaus 
in the plan space
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Iterative improvement

Repeat until some stopping condition (e.g., time 
runs out):

Start with a random plan

Repeatedly go downhill (i.e., pick a neighbor with a 
lower cost randomly) to get to a local optimum

Return the smallest local optimum found
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Simulated annealing

Start with a plan and an initial temperature

Repeat until temperature is 0:
Repeat until some equilibrium (e.g., a fixed number of 
iterations):

• Move to a random neighbor of the plan (an uphill move is 
allowed with probability e – ∆cost ⁄ temperature)

– Larger → smaller probability

– Lower temperature → smaller probability

Reduce temperature

Return the plan visited with the lowest cost
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Two-phase optimization

Phase I: run iterative improvement for a while to 
find a good local optimum

Phase II: run simulated annealing with a low initial 
temperature to get more improvements

Why does this heuristic tend to work better than 
both iterative improvement and simulated 
annealing?
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Shape of the cost function

An average local optimum 
has a much lower cost than 
an average plan

The average distance between 
a random state and a local 
optimum is long

There are lots of local optima

Many local optima are 
connected together through 
low-cost plans within short 
distances

Cost

Space of plans

Cup-shaped
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Comparison of randomized algorithms

Iterative improvement
Too easily trapped in a local optimum

Too much work to restart

Simulated annealing
Too much time spent on high-cost plans

Two-phase
Phase I uses iterative improvement to get to the cup 
bottom quickly

Phase II uses simulated annealing to explore the cup 
bottom further


