End-Semester Logistics & Review

CPS 216

Advanced Database Systems

Announcements (April 23)

<+ Homework #4 will be graded by Saturday
= Sample solution available today

< Verify the accuracy of your scores in Blackboard and
let me know of any problem before the final

= Homework assignments, midterm, reviews, presentation

Announcements (cont’d)

+ Final exam next Monday (April 26)
= 2-5pm, in this room (D243 LSRC)

= Comprehensive (everything up to today’s lecture, with
emphasis on the second half of the course, and materials
exercised in homework assignments)

= Open book, open notes; no time pressure

= Sample final and solution available today (note the
difference materials covered in last year’s CPS216)

< Project demos Tues./Wed. after the final
® Email confirmation of schedule will be sent later today

= Remember that report is due before the demo

Pre-midterm: basics

% Relational model/algebra — physical data
independence
® Really made query optimization flourish
< SQL: NULL and three-value logic, bag versus set
semantics, subqueries, grouping and aggregation —
nifty features, mess for optimizers
= Recall query rewrite tricks for preserving duplicate,
avoiding the count bug, and magic decorrelation
= Use query rewrite to get back to the simplicity of
relational algebra

Pre-midterm: basics (cont’d)

< More SQL
® Views — logical data independence

® Materialized views — reintroduce redundancy to improve

performance

% Did not cover lots of interesting work on selecting views to
materialize, rewriting and optimizing queries using
materialized views, and maintaining materialized views

® Constraints — the more you know the better you can do
* Did not cover semantic query optimization
= Triggers (ECA) — “active” data

* Did not cover scalable trigger processing (related to multi-
query processing for continuous queries)

Pre-midterm: physical data organization

% Storage hierarchy (DC vs. Pluto)
— Count I/O’s
— Get as much useful info as possible with each long trip
— Do other things while waiting

% Disk performance — sequential beats random

% Data layout
= Record layout (handling variable-length fields, NULL’s)
= Block layout (NSM, DSM, PAX)

— Inter-/intra-record locality




7

Pre-midterm: physical data organization .

< Access paths
= Primary versus secondary indexes
= Tree-based indexes: ISAM, B*, B, R, R*, R*, GiST
® Hash-based indexes: extensible, linear

= Text indexes: inverted lists, signature files (and bit-sliced
ones), suffix array, trie, suffix tree, Patricia trie, Pat tree

® Variant indexes: value-list/bitmap, projection, bit-sliced
indexes, join indexes

— Reintroduce redundancy to improve performance

— Fundamental trade-off: query versus update cost

Pre-midterm: query processing

+ Scan-based algorithms
% Sort- and hash-based algorithms (and their duality)

% Index-based algorithms

+ Pipelined execution with iterators

= Blocking and non-blocking operators
% Buffer management

= Per-query, per-table policy is ideal

— The more you know the better you can do

Review: XML basics

% Data model: well-formed vs. valid (DTD = schema)
% Query languages
® XPath: (branching) path expressions (with conditions)

= XQuery: FLWR, subqueries in return (restructuring),
quantified expressions, aggregation, sorting

= XSLT: structural recursion with templates
% Programming: SAX (one pass) vs. DOM (in
memory)

10

Review: representing XML

% Flat files and CLOB do not really exploit the structure of
XML
% Schema-oblivious approaches
= Node/edge representation
= Interval-based representation (ef?, right, level)
® Path-based representation (labeled path, Dewey order)
= Sequence-based representation (ViST)
% Schema-aware approach
®= Inlining choice for +, *, and shared elements in DTD

= Less flexible and harder to reformulate queries, but queries are
more efficient — the more you know the better you can do

Review: processing XML

% Finite state machines (Niagra, YFilter)
< Node/edge representation

= Naturally leads to navigational processing

= Path expression steps — equality joins

* Top-down, bottom-up, hybrid, ... correspond to different join orders

% Interval-based representation

= Naturally leads to structural join processing

= Path expression steps — containment joins (great for anc/desc)

* Join ordering? Less of an issue because it can be processed
as a multi-way join on the same attribute

= Stacks are your best friend; remember XML intervals don’t overlap
@ A mixed-mode approach may be best
= Everything comes down to joins!

Review: indexing XML

< Basic indexes: inverted lists for tag names, value indexes,
back pointers to parents, etc.

< Index for interval-based representation

= Example: XR-tree (B*-tree augmented with stab lists at internal
nodes) for finding ancestors

« Index for path-based representation
= Example: IndexFabric (based on Patricia trie)
< Index for sequence-based representation
= Example: ViST

* Path expression — (non-contiguous) subsequence matching

¢ Use a trie to store sequences, encoded using intervals to support skipping
% Structural summary indexes for graphs
= Examples: DataGuide (DFA) and 1-index (NFA)
= Still plenty of room for improvement




13

Review: query optimization or “goodification”?

< Heuristics: push selections down; smaller joins first

— Reduce the size of intermediate results

< Cost-based

" Query rewrite
* Apply relational algebra equivalences to SPJ blocks
* Merge blocks to get a bigger search space
® Cost estimation
* Boils down to estimating the size of intermediate results
* Use statistics (e.g., histograms) — fundamental trade-off: cost versus
accuracy
= Search

* Dynamic programming (+ interesting orders), randomized search, genetic
programming, etc.




