
1

Ordering

2

ORDER BY

SELECT [DISTINCT] ...
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC | DESC], …;
ASC = ascending, DESC = descending

Operational semantics
After SELECT list has been computed and optional
duplicate elimination has been carried out,
sort the output according to ORDER BY specification

3

ORDER BY example

List all students, sort them by GPA (descending)
and then name (ascending)

SELECT SID, name, age, GPA
FROM Student
ORDER BY GPA DESC, name;
ASC is the default option

Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

Can use sequence numbers of output columns instead
ORDER BY 4 DESC, 2;

Triggers

5

“Active” data

Constraint enforcement: When a transaction
violates a constraint, abort the transaction or try to
“fix” the data

Example: enforcing referential integrity constraints

Generalize to arbitrary constraints?

Data monitoring: When something happens to the
data, automatically execute some action

Example: When price rises above $20 per share, sell

Example: When enrollment is at the limit and more
students try to register, email the instructor

6

Triggers

A trigger is an event-condition-action rule
When event occurs, test condition; if condition is
satisfied, execute action

Example:
Event: whenever there comes a new student…

Condition: with GPA higher than 3.0…

Action: then make him/her take CPS216!

2

7

Trigger example

CREATE TRIGGER CPS216AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW ROW AS newStudent
FOR EACH ROW
WHEN (newStudent.GPA > 3.0)
INSERT INTO Enroll

VALUES(newStudent.SID, ’CPS216’);

Event

Condition

Action

8

Trigger options

Possible events include:
INSERT ON table
DELETE ON table
UPDATE [OF column] ON table

Trigger can be activated:
FOR EACH ROW modified

FOR EACH STATEMENT that performs modification

Action can be executed:
AFTER or BEFORE the triggering event

9

Transition variables
OLD ROW: the modified row before the triggering event
NEW ROW: the modified row after the triggering event
OLD TABLE: a hypothetical read-only table containing all
modified rows before the triggering event
NEW TABLE: a hypothetical table containing all modified
rows after the triggering event
Not all of them make sense all the time, e.g.

AFTER INSERT statement-level triggers
• Can use only NEW TABLE

BEFORE DELETE row-level triggers
• Can use only OLD ROW

etc.

10

Statement-level trigger example

CREATE TRIGGER CPS216AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll
(SELECT SID, ’CPS216’
FROM newStudents
WHERE GPA > 3.0);

11

BEFORE trigger example

Never give faculty more than 50% raise in one update

CREATE TRIGGER NotTooGreedy
BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;
BEFORE triggers are often used to “condition” data

Another option is to raise an error in the trigger body to
abort the transaction that caused the trigger to fire

12

Statement- vs. row-level triggers

Why are both needed?
Certain triggers are only possible at statement level

If the average GPA of students inserted by this
statement exceeds 3.0, do …

Simple row-level triggers are easier to implement
and may be more efficient

Statement-level triggers require significant amount of
state to be maintained in OLD TABLE and NEW TABLE
However, a row-level trigger does get fired for each row,
so complex row-level triggers may be inefficient for
statements that generate lots of modifications

3

13

System issues

Recursive firing of triggers
Action of one trigger causes another trigger to fire

Can get into an infinite loop
• Some DBMS restrict trigger actions

• Most DBMS set a maximum level of recursion (16 in DB2)

Interaction with constraints (very tricky to get right!)
When do we check if a triggering event violates constraints?

• After a BEFORE trigger (so the trigger can fix a potential violation)

• Before an AFTER trigger

AFTER triggers also see the effects of, say, cascaded deletes caused
by referential integrity constraint violations

(Based on DB2; other DBMS may implement a different policy!)

Transactions

15

Transactions

A transaction is a sequence of database operations
with the following properties (ACID):

Atomicity: Operations of a transaction are executed all-
or-nothing, and are never left “half-done”
Consistency: Assume all database constraints are satisfied
at the start of a transaction, they should remain satisfied
at the end of the transaction
Isolation: Transactions must behave as if they were
executed in complete isolation from each other
Durability: If the DBMS crashes after a transaction
commits, all effects of the transaction must remain in the
database when DBMS comes back up

16

SQL transactions
A transaction is automatically started when a user executes
an SQL statement
Subsequent statements in the same session are executed as
part of this transaction

These statements can see the changes made by earlier statements
in this transaction
Statements in other concurrently running transactions should not
see these changes

COMMIT command commits the transaction
Its effects are made final and visible to subsequent transactions

ROLLBACK command aborts the transaction
Its effects are undone

17

Fine prints

Schema operations (e.g., CREATE TABLE) implicitly
commit the current transaction

Because it is often difficult to undo a schema operation

You can turn on/off a feature called AUTOCOMMIT,
which automatically commits every single statement

18

Atomicity

Partial effects of a transaction must be undone when
User explicitly aborts the transaction using ROLLBACK

• Application asks for user confirmation in the last step and
issues COMMIT or ROLLBACK depending on the response

The DBMS crashes before a transaction commits

Partial effects of a modification statement must be
undone when any constraint is violated

However, only this statement is rolled back; the
transaction continues

How is atomicity achieved?
Logging

4

19

Durability

Effects of committed transactions must survive
DBMS crashes

How is durability achieved?
DBMS manipulates data in memory; forcing all changes
to disk at the end of every transaction is very expensive

Logging

20

Consistency

Consistency of the database is guaranteed by
constraints and triggers declared in the database
and/or transactions themselves

When inconsistency arises, abort the statement or
transaction, or (with deferred constraint checking or for
application-enforced constraints) fix the inconsistency
within the transaction

21

Isolation

Transactions must appear to be executed in a serial
schedule (with no interleaving operations)

For performance, DBMS executes transactions using
a serializable schedule

In this schedule, operations from different transactions
can interleave and execute concurrently

But the schedule is guaranteed to produce the same
effects as a serial schedule

How is isolation achieved?
Locking, multi-version concurrency control, etc.

22

SQL isolation levels

Strongest isolation level: SERIALIZABLE
Complete isolation

SQL default

Weaker isolation levels: REPEATABLE READ, READ
COMMITTED, READ UNCOMMITTED

Increase performance by eliminating overhead and
allowing higher degrees of concurrency

Trade-off: sometimes you get the “wrong” answer

23

READ UNCOMMITTED
Can read “dirty” data

A data item is dirty if it is written by an uncommitted transaction

Problem: What if the transaction that wrote the dirty data
eventually aborts?

Example: wrong average
-- T1: -- T2:
UPDATE Student
SET GPA = 3.0
WHERE SID = 142; SELECT AVG(GPA)

FROM Student;
ROLLBACK;

COMMIT;

24

READ COMMITTED
No dirty reads, but non-repeatable reads possible

Reading the same data item twice can produce different results

Example: different averages
-- T1: -- T2:

SELECT AVG(GPA)
FROM Student;

UPDATE Student
SET GPA = 3.0
WHERE SID = 142;
COMMIT;

SELECT AVG(GPA)
FROM Student;
COMMIT;

5

25

REPEATABLE READ

Reads are repeatable, but may see phantoms

Example: different average (still!)
-- T1: -- T2:

SELECT AVG(GPA)
FROM Student;

INSERT INTO Student
VALUES(789, ‘Nelson’, 10, 1.0);
COMMIT;

SELECT AVG(GPA)
FROM Student;
COMMIT;

26

Summary of SQL isolation levels

Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL isolation_level
[READ ONLY|READ WRITE];

READ UNCOMMITTED can only be READ ONLY (why?)

Criticized recently for being ambiguous and incomplete
See reading assignment

ImpossibleImpossibleImpossibleSERIALIZABLE
PossibleImpossibleImpossibleREPEATABLE READ
PossiblePossibleImpossibleREAD COMMITTED
PossiblePossiblePossibleREAD UNCOMMITTED
PhantomsNon-repeatable readsDirty readsIsolation level/anomaly

Application Programming

28

SQL Programming

Pros and cons of SQL
Very high-level, possible to optimize

Not intended for general-purpose computation

Solutions
Inside: augment SQL with constructs from general-
purpose programming languages (e.g., SQL/PSM, Oracle
PL/SQL, etc.)

Outside: use SQL together with general-purpose
programming languages (e.g., JDBC, SQLJ, etc.)

29

Impedance mismatch and a solution
SQL operates on a set of records at a time
Typical low-level general-purpose programming languages
operates on one record at a time
Solution: cursors

Open (a table or a result table): position the cursor just before the
first row
Get next: move the cursor to the next row and return that row;
raise a flag if there is no more next row
Close: clean up and release DBMS resources
Found in virtually every database language/API (with slightly
different syntaxes)
Some support more cursor positioning and movement options,
modification at the current cursor position, etc.

30

Augmenting SQL: SQL/PSM example
CREATE FUNCTION SetMaxGPA(IN newMaxGPA FLOAT)

RETURNS INT
-- Enforce newMaxGPA; return number of rows modified.

BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisGPA FLOAT;
-- A cursor to range over all students:
DECLARE studentCursor CUSOR FOR

SELECT GPA FROM Student
FOR UPDATE;
-- Set a flag whenever there is a “not found” exception:
DECLARE noMoreRows INT DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND

SET noMoreRows = 1;
… (see next slide) …
RETURN rowsUpdated;

END

6

31

SQL/PSM example continued
-- Fetch the first result row:
OPEN studentCursor;
FETCH FROM studentCursor INTO thisGPA;
-- Loop over all result rows:
WHILE noMoreRows <> 1 DO

IF thisGPA > newMaxGPA THEN
-- Enforce newMaxGPA:
UPDATE Student SET Student.GPA = newMaxGPA
WHERE CURRENT OF studentCursor;
-- Update count:
SET rowsUpdated = rowsUpdated + 1;

END IF;
-- Fetch the next result row:
FETCH FROM studentCursor INTO thisGPA;

END WHILE;
CLOSE studentCursor;

32

Interfacing SQL with another language

API approach
SQL commands are sent to the DBMS at runtime

Examples: JDBC, ODBC (for C/C++/VB), Perl DBI

These API’s are all based on the SQL/CLI (Call-Level
Interface) standard

Embedded SQL approach
SQL commands are embedded in application code

A precompiler checks these commands at compile-time
and convert them into DBMS-specific API calls

Examples: embedded SQL for C/C++, SQLJ (for Java)

33

Example API: JDBC
…
// Execute a query and get its results:
ResultSet rs =

stmt.executeQuery(”SELECT SID, name FROM Student”);
// Loop through all result rows:
while (rs.next()) {

// Get column values:
int sid = rs.getInt(1);
String name = rs.getString(2);
// Work on sid and name:
…

}
// Close the ResultSet:
rs.close();
…

34

Some other useful JDBC features

Prepared statements
For every SQL string it gets, the DBMS must perform parsing,
semantic analysis, optimization, compilation, and execution

Precompile frequently used statement patterns (e.g., “SELECT name
FROM Student WHERE SID = ?”) into prepared statements

Execute prepared statements with actual parameter values

The DBMS only needs to validate the parameter values and the
compiled execution plan before executing it

Transaction support
Set isolation level for current transaction
Turn on/off AUTOCOMMIT (commits every single statement)

Commit/rollback current transaction (when AUTOCOMMIT is off)

35

Example of embedding SQL in C
…
/* Declare variables to be “shared” between application and DBMS: */
EXEC SQL BEGIN DECLARE SECTION;
int thisSID; float thisGPA;
EXEC SQL END DECLARE SECTION;
/* Declare a cursor: */
EXEC SQL DECLARE StudentCursor CURSOR FOR

SELECT SID, GPA FROM Student;
EXEC SQL OPEN StudentCursor; /* Open the cursor */
EXEC SQL WHENEVER NOT FOUND DO break; /* Specify exit condition */
/* Loop through result rows: */
while (1) {

/* Get column values for the current row: */
EXEC SQL FETCH StudentCursor INTO :thisSID, :thisGPA;
…

}
EXEC SQL CLOSE CPS196Student; /* Close the cursor */
…

36

Pros and cons of embedded SQL

Pros
More compile-time checking (syntax, type, schema, …)

Code could be more efficient (if the embedded SQL
statements do not need to checked and recompiled at
run-time)

Cons
DBMS-specific

• Vendors have different precompilers which translate code into
different native API’s

• Application executable is not portable (although code is)

• Application cannot talk to different DBMS at the same time

7

37

Pros and cons of augmenting SQL

Pros
More sophisticated stored procedures and triggers
More application logic can be pushed closer to data

Cons
Already too many programming languages
SQL is already too big
General-purpose programming constructs complicate
optimization make it impossible to tell if code running
inside the DBMS is safe
At some point, one must recognize that SQL and the
DBMS engine are not for everything!

