
The Evolution of Effective B-tree Page Organization and Techniques:
A Personal Account

David Lomet
Microsoft Research

Redmond, WA 98052
lomet@microsoft.com

1. Introduction

An under-appreciated facet of index search
structures is the importance of high performance
search within B-tree internal nodes. Much
attention has been focused on improving node
fanout, and hence minimizing the tree height
[BU77, LL86]. [GG97, Lo98] have discussed
the importance of B-tree page size. A recent
article [GL2001] discusses internal node
architecture, but the subject is buried in a single
section of the paper.

In this short note, I want to describe the long
evolution of good internal node architecture and
techniques, including an understanding of what
problem was being solved during each of the
incremental steps that have led to much
improved node organizations.

2. Bavarian Magic

While B-trees are first described in [BM71], it is
the prefix B-tree paper that Bayer jointly wrote
with Unterrauer [BU77] that is the seminal work
in the area of internal node organization. A
prefix B-tree provides two kinds of compression,
head compression and tail compression. Both
are important, and as will be seen, continue to
have a pervasive influence over much of the
subsequent work.

• Head compression factors out a common
prefix from all index entries on an internal B-
tree page. This saves space, while preserving
the ability to perform non-sequential search,
notably binary search. For simplicity, one
chooses a common prefix for all keys that the
page can store, not just the current keys.

• Tail compression selects a short index term
for the nodes above the data pages. This
index term need merely “separate” the keys
of one data node from those of its sibling and

is chosen during a node split. For example,
when splitting a node between keys ki and
ki+1, choose the shortest string s, ki < s < ki+1.

Prefix B-tree compression produces significant
improvements in B-tree performance. The size
of the index is smaller overall, the fanout per
node is increased, and hence fewer I/O’s are
performed to reach the data.

The prefix B-tree paper showed an appropriate
concern for search performance within a page.
Head compression helps improve performance
by factoring out the common prefix, while
preserving an ability to do binary search. Tail
compression produces variable length index
entries, and [BU77] describes a binary search
that copes with variable length entries.

Unfortunately, prefix B-tree binary search has
high probe overhead, i.e. it is costly to find the
next key to be compared. All index entries are
concatenated into a single byte string, with
delimiters to identify the boundaries of each
index entry. The binary search probes the mid-
point of this string. It finds the start of the
nearest entry to this mid-point, and does the
comparison of search key with this entry. Each
subsequent probe cuts the search span in half,
but still requires the step of looking around for
the start of the nearest entry. Hence, each probe
must both adjust the span and search for the start
of a nearby entry. This is a far cry from the cost
of binary search on fixed size keys.

3. Slicing and Dicing in Yorktown

After the prefix B-tree paper appeared, several
researchers became aware of the problem with
trying to perform a binary search on variable
length entries, and this has remained a problem
for many years. The problem here is how to
compute the next probe when the entries to be

“jumped over” can vary in size. One technique,
called slide search [STM78], computes the
number of entries that needed to be passed over
during each step of the binary search, and then
“slides” over them, i.e. searching for boundary
markers and passing over the appropriate number
of entries prior to performing a comparison. It is
not clear that this is an improvement over
[BU77].

I tackled this problem in 1978, while I was at
IBM Research in Yorktown. My idea was to
place the variable length entries into one of a
number of tables, a different table for each length
(with tables containing only a few entries being
merged, etc.). Each table could then be searched
using a fixed length binary search, and some
final compares between entries found produces
the correct answer. This idea was published in
[Lo79]. While an improvement over its
competitors, compared with fixed length binary
search, it was clear that a serious performance
loss was still incurred.

4. B-trees at WIGS

In 1985, I started a new job as a professor at the
Wang Institute of Graduate Studies (WIGS).
WIGS offered an MS in Software Engineering,
with a curriculum that was a blend of computer
science, programming, software methods and
management practices.

Project courses played an important part in
giving students the opportunity to practice, in
some approximation to real world conditions, the
skills that they had learned in the classroom.
Phil Bernstein, already at WIGS when I arrived,
had the idea for a series of projects which he
called “DB-Kit”. The idea was to produce the
components of a database system that would
then be “released” to the wider academic world
and could serve as the basis for university
instruction and research in the database area.
Phil had an easy time recruiting me to this effort.

The first DB-Kit project (in the winter of 1986)
was to implement a B-tree. We, as joint faculty
for this project, assumed roles in the project, Phil
as VP of software, while I became the chief
architect. As architect, the task of designing the
B-tree was my responsibility. I once again had
the opportunity to design (was forced to
confront) the internal organization of B-tree
nodes.

Key Prefix Vector
I was determined to improve upon the
organizations that I had seen before and provide
decent binary search performance for variable
length entries. What I wanted was a method that
minimized the comparison cost as well as the
probe cost. This is how the idea of the <key
prefix, pointer> table arose. By extracting a
fixed length prefix, one could perform the
comparison on the prefix as a fixed length item,
in exactly the same way that one did the
comparison using fixed length keys. Only
occasionally would one need to examine the key
suffix to determine the result of the comparison.
Figure 1 illustrates this page organization with a
key prefix vector.

control info
entries

key prefix pointer

K1 pref P1

Kj pref Pj

disk adr len K1 suf

Includes common prefix of
all keys

Figure 1: Key prefix vector

Unrolled Binary Search
To further speed search, the project exploited a
binary search technique, attributed to Shar by
Knuth [Kn73] (page 413). This form of binary
search, after a subtle first probe, permits all
subsequent probes to be at known intervals
whose displacements can be embedded as
displacements into the instructions of an unrolled
loop. Thus, it becomes possible to completely
avoid the usual loop branching and index
computation overhead.

Normalizing Keys
Separating the key prefixes from the key suffixes
permits the use of fixed length entries in the
page. But comparisons can still be expensive if
one needs to call a “compare” subroutine, or
even should one need to do a byte-by-byte
comparison which requires a loop and accesses
the key one byte at a time.

Thus, it seemed to me that what one wanted was
to do a word compare of the key prefix with the
corresponding prefix of the search key argument.
Having come from IBM, I “knew” that this was
possible by storing the first four characters of a
string as the key prefix. Unfortunately, this did
not work at WIGS. Wang Institute used VAX
computers for its basic computer infrastructure.
The VAX is a “little endian” machine, meaning
that the order of bytes in a word is (1,0,3,2),. not
(0,1,2,3) as it is on “big endian” IBM computers
[Co80].

Fortunately, there is a solution. One transforms
little endian byte strings into word strings by
permuting bytes in words. The “1” and “3” byte
are swapped, as are the “0” and the “2” bytes,
producing the big endian byte order in the key
prefix. Our design specified this for the entire
key string, so that comparisons in the key suffix
can also be done using word (4-byte) compares.
Converting data into a format in which your
desired comparison operator returns a correct
result is now sometimes called “normalization”.

Common Page Prefix
The Achilles’ heel of the key prefix vector
technique arises when many of the prefixes are
the same, and hence a search must go to the key
suffix to determine the comparison. I was aware
of this difficulty during the B-tree project but the
time constraints of a semester project did not
permit dealing with the problem then. However,
two semesters later, I taught the database course
at WIGS. I decided that a reasonable class
project, within the database course was to deal
with the non-unique prefix problem. The answer
to this problem came, not surprisingly, from the
original prefix B-tree paper [BU77]. So students
were directed to evolve the preceding project’s
B-tree into a prefix B-tree.

The students in the database class all
successfully dealt with the intricacies of the data
structures required to make this work. Figure 1
illustrates that the page header (control
information) includes the common prefix for all
keys on the page. This factors the common
prefix out of the prefix vector. Hence, the “prefix
vector” now contains the “prefix” of the
remaining key suffix.

Searching the “key prefix vector” is now much
more effective. The chance of finding vector
entries where the result of the comparison can’t

be determined without examining the key suffix
is substantially reduced as the vector entry
extends “deeper” into the key. Indeed, the
performance of the comparison is uniformly
improved, even when the suffix needs to be
accessed, as the common prefix for the page is
not repeatedly compared.

All database course students successfully
completed this course project. One project, done
by students Greg Carpenter and Tony Bolt, was
particularly clever, improving on the prefix B-
tree technique [CB87]. Instead of a common
prefix between adjacent index terms being used
as the common prefix for the page, the common
prefix determination used <lowest key, highest
key> possible on the page. Suppose that page i
has index term “ABC” while page i+1 has index
term “AC”, where an index terms identifies the
lowest possible key value on each page. Then
the prefix B-tree technique yields a common
prefix for page i of “A”, while the technique in
[CB87] yields “AB”, since the highest key value
on page i must start with “AB”.

3. Short of Cache in San Francisco

Cache Sensitivity
By the early 1990’s, I had joined Digital, first in
the database group, and subsequently in research.
This gave me the opportunity to work with Jim
Gray, and with the many very talented people in
Digital’s Rdb group. In that setting, and
particularly with the arrival of the Alpha
processor, I became aware of the growing
disparity between processor speed and main
memory speed. Benchmark results on database
systems suggested that about one instruction
opportunity in six was actually being used to
execute an instruction. However, I had not really
given any thought to designing data structures
for cache locality.

Key Prefixes for Sorting
Then I learned that Jim Gray and Chris Nyberg
were planning to specially tailor a sort program
to exploit cache locality. [Such a cache sensitive
sort re-emphasized the advantage of quicksort,
because of the way in which keys are accessed in
sequence.] I thought this was a wonderful idea,
and expressed my strong enthusiasm for the
project, which became known as AlphaSort. It
was only later, in a conversation with Chris
about data structures that I realized that the key
prefix vector made sense in the cache sensitive

sort program. So I suggested this to Chris and
this became part of AlphaSort [NBCGL94].

Pursuing cache sensitivity further, we also
concluded that it would make sense to separate
the key prefixes from the pointers to the rest of
the record. This would put the key prefixes in
one vector, and their pointers in a separate
vector. Thus key prefixes would now be
contiguous, and more key prefixes would then be
within a single cache line.

Having thought through cache sensitivity for
sorting, it seemed clear that applying the
“vertical partitioning” of the key prefix vector to
B-tree node organization was also a good idea.
So this became part of my “idealized” node
organization that I subsequently described in
talks at Microsoft in 1995. This kind of “vertical
partitioning” was independently arrived at later
in [RR2000].

4. Index “Explosion” in Rdb Land

Many Multi-field Indexes
Working with Digital’s very talented Rdb
development team was a real education in the
problems that database groups face in being
responsive to customer requirements. One
problem faced by an Rdb customer arose from
the customer requirement to create many multi-
field indexes.

The most significant aspect of disk space
consumption involved storing variable length
character strings as part of multi-field indexes.
The SQL query language standard requires that
comparing two variable length character strings
produce the same result as comparing the
character strings when padded out with blanks
(‘20’X) to their maximum permitted sizes.
Because of this, Rdb had fully padding the keys
of the indexes. This led to an enormous demand
for disk space. (It is important to note that “null
terminating” strings will not work when any byte
can be part of the string. Thus, one might find a
“null” (‘00’X) within a string of bytes, and
confuse it with a string terminator.)

Ancient Problem, Ancient Technique
To optimize comparisons during search, one
wants to compare four bytes at a time (or more if
the hardware supports it), regardless of what the
data types of multiple fields might be and
regardless of whether variable length character

strings are embedded within the multiple keys.
Padding variable length character strings to their
maximum length permits this kind of multi-field
compare. This is normalization applied to multi-
field keys.

The System R team had faced a this problem and
wanted a similar result, i.e., one comparison
regardless of field boundaries, and they did not
want to pad variable length fields to their
maximum length. Their padding character was
always ‘00’X, and their solution [BCE77], which
involved inserting control characters into the
string at fixed locations to indicate where it was
ending (note that a string terminator character
does not solve the problem), worked only
because the padding character was ‘00’X. So I
actually thought that the problem, when padding
with blanks, did not have a solution.

Order Preserving Compression
Luckily, Jim Murray, of the DEC Rdb team did
not agree. Jim devised a very clever encoding by
treating the problem as an order preserving
compression problem. And the insight here is
that when dealing with variable length fields
among the multiple fields one is attempting to
order, one needs two encodings for each length
string, one for when the following field
compares high to the variable length field pad
character, and another when the following field
compares low. Any run of characters can be
compressed, though pad character compression
is the big win. Using � ���denote blank��
���	�
���concatenation�����������

• � 	length(� s) when next character < �

• � 	(2*maxstring – length(� s)) when next
character > �

This encoding preserves order as short strings
compare low to longer strings when the next
character is low and high when the next
character is high.

I got involved in this effort when Gennady
Antoshenkov formulated a generalization that
permitted order preserving compression to be
used in a much wider context. I was asked to
help Gennady in writing this up and then went
on to generalize it further so that the resulting
compression framework could deal fully with
Jim Murray’s run-length encoding.

These techniques, both the specific run-length
encoding of Jim Murray’s, and the order
preserving compression framework, were
described in [ALM96] a little over a year after
DEC had left the database business, and, sadly,
shortly after Gennady died.

5. Micro-Indexing at Microsoft

I left Digital when it left the database business,
following several Rdb and Research colleagues
to Microsoft. The timing of Microsoft’s serious
entry into the database business was fortuitous,
for those of us at Digital who wanted to continue
careers in the database area.

When I arrived at Microsoft in 1995, I was
promptly asked to give a talk on access methods.
I did that, describing much of what I have
written about here. And I was immediately
challenged about the impact of processor cache
and the growing memory latency (in processor
cycles) on my recommended approaches.

One question was whether an unrolled binary
search (Shar’s method [Kn73]) is better than a
looped binary search, given the impact of
instruction caching. An unrolled binary search
spreads instructions over more i-cache lines.
Hence, even though fewer instructions are
executed, one might still do worse by unrolling
the loop. I did the experiment. And unrolling
still won, though the gain was not as large as it
had been.

More importantly, Pat Helland questioned the
effectiveness of binary search versus intra-node
“micro-indexing”. The first few probes of a
binary search always result in d-cache misses.
Introducing a small index that might fit in a
cache line (or two) might reduce the number of
d-cache misses. I again did some experiments,
and in this case found that putting a 16 entry
index over the full vector of index terms (256-
512 terms) did speed up the search somewhat.
Untested was the potential negative impact of the
micro-index on node fanout, due to its
consumption of storage in the node.

6. The Future

Recently, processor cache sensitive data
structures and techniques have become a serious
area of investigation. Work on how to organize

database pages, including B-tree nodes [RR2000,
ADH2001], has once again become a topic of
interest, now in an effort to better exploit
processor cache.

An interesting recently published technique
exploits pre-fetching an entire smaller B-tree
node [CGM2001]. Results reported there
confirm that this is a good idea, both for search
and for insertions. While good, it is, I think, an
incomplete idea. Database cache management
puts a large premium on having uniform page
size for all data to simplify database cache
management. And database page size is
optimized for the disk, not for the processor
cache. To optimize for the properties of disks
calls for a page size of 12KB to 16KB [GG97,
Lo98], and may get even larger.

My view is that we need to move away from a
monolithic vector of index entries in a B-tree
node. This organization results in too many
processor cache misses during the initial binary
search probes and moves too much data in order
to make space for a new index entry. To
improve on search and insertion performance
requires that we break up the disk page into
smaller units, units that are more readily pre-
fetched as suggested in [CGM2001]. The exact
details of what needs to be done require some
experimentation to find an organization that is a
good balance between search and insert
performance, storage utilization, and simplicity.

References

[ADH2001] Ailamaki, A., DeWitt, D. and Hill,
M. Weaving Relations for Cache Performance.
VLDB Conf. Rome (Sept. 2001) (to appear)

[ALM96] Antoshenkov, G., Lomet, D., and
Murray, J. Order Preserving Compression. Int'l
Conf on Data Engineering, New Orleans, LA
(Feb. 1996) 655-663.

[BCE77] Blasgen, M., Casey, R. and Eswaren,
K. An Encoding Method for Multi-field Sorting
and Indexing. Comm. ACM 20,11 (Nov. 1977)
874-878 and IBM Research Report RJ 1753
(Mar. 1976), San Jose, CA.

[BM71] Bayer, R. and McCreight, E. Organization
and Maintenance of Large Ordered Indexes. Acta
Informatica 1 (1972) 173-189.

[BU77] Bayer, R. and Unterauer, Prefix B-trees.
ACM Trans. On Database Systems, 2,1 (Mar.,
1977) 11-26.

[Co80] Cohen, D. Byte Order: On Holey Wars and
a Plea for Peace, USC/ISI (April 1980) at URL:
http://www.rdrop.com/~cary/html/endian_faq.html

[CB87] Carpenter, G. and Bolt, T. Key
compression in the B-tree node manager. Wang
Institute DB Course project, Feb. 1987

[CGM2001] Chen, S. and Gibbons, P., and Mowry,
T. Improving Index Performance through
Prefetching, ACM SIGMOD Conf. Santa Barbara,
CA (2001).

[GG97] Gray, J. and Graefe, G. The Five-Minute
Rule Ten Years Later, and Other Computer
Storage Rules of Thumb. ACM SIGMOD
Record 26,4 (Dec. 1997) 63-68.

[GL2001] Graefe, G. and Larson, P. B-tree
Indexes and CPU Caches. Intl. Conf. on Data
Engineering, Heidelberg (Apr. 2001) 349-358.

[Kn73] Knuth, D. The Art of Computer
Programming, vol. 3. Sorting and Searching.
Addison-Wesley, Menlo Park, CA. (1973)

[LL86] Litwin, W. and Lomet, D. The Bounded
Disorder Access Method. Intl. Conf. on Data
Engineering, Los Angeles (Feb. 1986) 38-48.

[Lo79] Lomet, D. Multi-table Search for B-tree
Files. ACM SIGMOD Conf., Boston, MA (May
1979), 35-42.

[Lo98] Lomet, D. B-tree Page Size When
Caching is Considered. SIGMOD Record 27,3
(Sept. 1998) 28-32.

[NBCGL94] Nyberg, C., Barclay, T.,
Cvetanovic, Z., Gray, J., and Lomet, D.
AlphaSort: a RISC Machine Sort. (Best Paper
Award) ACM SIGMOD Conf., Minneapolis, MN
(May 1994) 233-242

[RR2000] Ross, K. and Rao, J. Making B+-trees
Cache Conscious in Main Memory. ACM
SIGMOD Conf., Dallas, TX (May 2000) 475-
486.

[STM78] Strong, R., Traiger, I., and
Markowsky, G. Slide Search. IBM Report
RJ2274 (June 1978). .

[WIGS86] Bernstein, P., Lomet, D., Bakerman, T.,
MacDonald, W., Malek, S., Mitlak, W.,
Schweiker, R., Tupper, J., Velardocchia, L. B-Tree
Access Method DB-Kit Final Report. Wang
Institute Project Course Report, (April, 1986)

