Toward understanding data structures

® What can be put in a TreeSet?
® What can be sorted?
»> Where do we find this information?
» How do we understand the information?

® What can be put in an ArrayList? Why is this different?
» What operations exist on an ArrayList?

» What about an array, or operations done on an ArrayList
as opposed to what an ArrayList does to itself?

CPS 100 2.1

What can an Object do (to itself)?

°
» Look at java.lang.Object
toString(Q)
» Used to print (System.out.println) an object, overriding

toString() can result in 'useful' information being printed,
also used in String concatenation: Strings =x +;

» Default is basically a pointer-value
e equalsQ

» Determines if guts of two objects are the same, must
override, e.g., for using a. index0f(0) in ArrayLista

» Default is ==, pointer equality
® hashCode()
» Hashes object (guts) to value for efficient lookup

CPS 100 2.2

Objects and values

® Primitive variables are boxes
» think memory location with value
® Object variables are labels that are put on boxes
String s new String(''genome);
String t new String(''genome");
if (s == t) {they label the same box}
if (s.equals(t)) {contents of boxes the same}

What's in the boxes? "genome" is in the boxes

CPS 100 2.3

Objects, values, classes

® For primitive types: int, char, double, boolean

> Variables have names and are themselves boxes
(metaphorically)

» Two int variables assigned 17 are equal with ==

® For object types: String, Sequence, others
» Variables have names and are labels for boxes
> If no box assigned, created, then label applied to nul l
» Can assign label to existing box (via another label)
» Can create new box using new

® Object types are references or pointers or labels to storage

CPS 100 2.4

What about a 'struct’' (plain old data)

® We use classes, data/state is private, methods are public
> Why do we have rules? When can they be broken?
> Why are there both structs and classes in C++?

® What about helping class, e.g., word and frequency together?

> We can have one class nested in another, then we don't
have to worry so much about encapsulation

® See recitation example for creating a Class that can be
compared using equality and can be sorted

» Comparable interface must be symmetric with .equals
» What happens if this isn't the case?

CPS 100 25

Brute force? SillyAnagrams. java

public String[] allAnagrams(String s) {

int anaCount = factorial(s.length(Q));

Set anagrams = new TreeSet();

ArrayList list = new ArrayList();

for(int k=0; k < s.lengthQ); k++){
list.add(s.substring(k,k+1));

3

while (anagrams.size() !'= anaCount){
Collections.shuffle(list);
anagrams.add(listToString(list));

}

return (String[l)

anagrams.toArray(new String[0]);

CPS 100

2.6

Quantifying brute force for anagrams

® All anagrams of "compute" takes average of 1 second over 20
trials. How long will "computer" take? Why?

> What is worst case time?
> What is best case time?

® We're willing to do some pre-processing to make the time to
find anagrams quicker

» Often find that some initialization/up-front time or cost
saves in the long run

» What properties do words share that are anagrams?

CPS 100 27

John von Neumann

“Anyone who attempts to
generate random numbers by
deterministic means is, of
course, living in a state of sin.”

“There's no sense in being precise
when you don't even know
what you're talking about. “

“There are two kinds of people in
the world: Johnny von
Neumann and the rest of us.”

Eugene Wigner, Noble Physicist

CPS 100

2.8

Toward a faster anagram finder

® \Words that are anagrams have the same letters; use a letter
fingerprint or signature/histogram to help find anagrams

» Count how many times each letter occurs:
“teacher” 10102001000000000101000000
“cheater” 10102001000000000101000000

® Store words, but use fingerprint for comparison when
searching for an anagram

» How to compare fingerprints using .equals()
» How to compare fingerprints using .compareTo()

® How do we make client programmers unaware of
fingerprints? Should we do this?

CPS 100 2.9

Another anagram method

® Instead of fingerprint/histogram idea, use sorted form of word
> ‘“gable” and “bagel” both yield “abegl”
» Anagrams share same sorted form

o Similarities/differences to histogram/fingerprint idea?
> Both use canonical or normal/normalized form
» Normalized form used for comparison, not for printing
> When should this normal form be created?

® When is one method preferred over the other?

» Big words, little words? Different alphabets? DNA vs
English?

CPS 100 2.10

OO0 and Java

o We’ll use an adapter or wrapper class called Anaword instead
of String

» Clients can treat Anaword objects like strings, but the
objects are better suited for finding anagrams than strings

» The Anaword for “bear” prints as “bear” but compares to
other Anaword objects as 11001000000000000100000000

® InJava change behavior with .toString() and .equals(Q)
» No overloaded operators as in C++
= Exception is +, this works for strings, but can't change it
» When string needed, automatically call toString()

CPS 100 211

Understandable, extensible?

® The code does things simply, but isn't very OO. Why is
simple sometimes better? Why is it worse?

void printAll(Anaword[] list, Anaword target)
{

System.out.print("anagrams of "+target+": ');

for(int k=0; k < list.length; k++){
if (target.equals(list[k])) {
System.out._print(list[k]);
}
}
System._out._printin(Q);
}

CPS 100 212

Find all anagrams in dictionary

o If we sort the dictionary what will happen to the anagrams?
» capitol optical topical
» danger gander garden ranged
» lameness maleness nameless salesmen

® How can we overload .equals()?
» Look at "danger" or 1001101000000100010....
® How can we sort with Collections.sort or Arrays.sort
» Elements sorted must be comparable/sortable
» Must implement the java.lang.Comparable interface

= Return negative, zero, positive number depending on less
than, equal to, or greater than

= What is method signature?

CPS 100 213

Anaword objects with options

® Can we use different canonical forms in different contexts?
» Could have Anaword, FingerPrintAnaword, SortAnaword

» What possible issues arise? What behavior is different in
subclasses?

« |f there’s no difference in behavior, don’t have subclasses

® Alternative, make canonical/normalize method a class

» Turn a function/idea into a class, then let the class vary to
encapsulate different methods

> Normalization done at construction time or later
» Where is normalizer object created? When?

CPS 100 2.14

Anagram: Using Normalizers

® How can we normalize an Anaword object differently?
» Call normalize explicitly on all Anaword objects
» Have Anaword objects normalize themselves
» Advantages? Disadvantages?

o If Anaword objects normalize themselves, how can we
experiment with different normalization techniques?

» Gut and paste. Problems? Versions? Saved code?
» What about using save-as and several .java files?
» What about deciding at runtime on normalization?

® We need inheritance!

CPS 100 2.15

Normalizer hierarchy

® Anaword objects normalize themselves

> Where does the normalizer come from?
e Passed in at construction time
= Obtained from normalizer factory
= Other approaches?

> How is Normalizer used?

® Normalizer is conceptually an interface

» Different implementations of the interface have different
behavior (guts) but same skin (sort of)

CPS 100 2.16

