
CPS 100 2.1

Toward understanding data structures

What can be put in a TreeSet?

What can be sorted?

Where do we find this information?

How do we understand the information?

What can be put in an ArrayList? Why is this different?

What operations exist on an ArrayList?

What about an array, or operations done on an ArrayList
as opposed to what an ArrayList does to itself?

CPS 100 2.2

What can an Object do (to itself)?

http://www.cs.duke.edu/csed/java/jdk1.4/docs/api/index.html

Look at java.lang.Object

toString()

Used to print (System.out.println) an object, overriding
toString() can result in 'useful' information being printed,
also used in String concatenation: String s = x + y;

Default is basically a pointer-value

equals()

Determines if guts of two objects are the same, must
override, e.g., for using a.indexOf(o) in ArrayList a

Default is ==, pointer equality

hashCode()

Hashes object (guts) to value for efficient lookup

CPS 100 2.3

Objects and values

Primitive variables are boxes

think memory location with value

Object variables are labels that are put on boxes

String s = new String("genome");

String t = new String("genome");

if (s == t) {they label the same box}

if (s.equals(t)) {contents of boxes the same}

s t

What's in the boxes? "genome" is in the boxes

CPS 100 2.4

Objects, values, classes

For primitive types: int, char, double, boolean

Variables have names and are themselves boxes
(metaphorically)

Two int variables assigned 17 are equal with ==

For object types: String, Sequence, others

Variables have names and are labels for boxes

If no box assigned, created, then label applied to null

Can assign label to existing box (via another label)

Can create new box using new

Object types are references or pointers or labels to storage

CPS 100 2.5

What about a 'struct' (plain old data)

We use classes, data/state is private, methods are public

Why do we have rules? When can they be broken?

Why are there both structs and classes in C++?

What about helping class, e.g., word and frequency together?

We can have one class nested in another, then we don't
have to worry so much about encapsulation

See recitation example for creating a Class that can be
compared using equality and can be sorted

Comparable interface must be symmetric with .equals

What happens if this isn't the case?

CPS 100 2.6

Brute force? SillyAnagrams.java

public String[] allAnagrams(String s) {

 int anaCount = factorial(s.length());

 Set anagrams = new TreeSet();

 ArrayList list = new ArrayList();

 for(int k=0; k < s.length(); k++){

 list.add(s.substring(k,k+1));

 }

 while (anagrams.size() != anaCount){

 Collections.shuffle(list);

 anagrams.add(listToString(list));

 }

 return (String[])

 anagrams.toArray(new String[0]);

}

CPS 100 2.7

Quantifying brute force for anagrams

All anagrams of "compute" takes average of 1 second over 20
trials. How long will "computer" take? Why?

What is worst case time?

What is best case time?

We’re willing to do some pre-processing to make the time to
find anagrams quicker

Often find that some initialization/up-front time or cost
saves in the long run

What properties do words share that are anagrams?

CPS 100 2.8

John von Neumann

“Anyone who attempts to
generate random numbers by
deterministic means is, of
course, living in a state of sin.”

“There's no sense in being precise
when you don't even know
what you're talking about. “

“There are two kinds of people in
the world: Johnny von
Neumann and the rest of us.”

Eugene Wigner, Noble Physicist

CPS 100 2.9

Toward a faster anagram finder

Words that are anagrams have the same letters; use a letter
fingerprint or signature/histogram to help find anagrams

Count how many times each letter occurs:

“teacher” 1 0 1 0 2 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

“cheater” 1 0 1 0 2 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

Store words, but use fingerprint for comparison when
searching for an anagram

How to compare fingerprints using .equals()

How to compare fingerprints using .compareTo()

How do we make client programmers unaware of
fingerprints? Should we do this?

CPS 100 2.10

Another anagram method

Instead of fingerprint/histogram idea, use sorted form of word

“gable” and “bagel” both yield “abegl”

Anagrams share same sorted form

Similarities/differences to histogram/fingerprint idea?

Both use canonical or normal/normalized form

Normalized form used for comparison, not for printing

When should this normal form be created?

When is one method preferred over the other?

Big words, little words? Different alphabets? DNA vs
English?

CPS 100 2.11

OO and Java

We’ll use an adapter or wrapper class called Anaword instead
of String

Clients can treat Anaword objects like strings, but the
objects are better suited for finding anagrams than strings

The Anaword for “bear” prints as “bear” but compares to
other Anaword objects as 11001000000000000100000000

In Java change behavior with .toString() and .equals()

No overloaded operators as in C++

• Exception is +, this works for strings, but can't change it

When string needed, automatically call toString()

CPS 100 2.12

Understandable, extensible?

The code does things simply, but isn't very OO. Why is
simple sometimes better? Why is it worse?

void printAll(Anaword[] list, Anaword target)

{

 System.out.print("anagrams of "+target+": ");

 for(int k=0; k < list.length; k++){

 if (target.equals(list[k])) {

 System.out.print(list[k]);

 }

 }

 System.out.println();

}

CPS 100 2.13

Find all anagrams in dictionary

If we sort the dictionary what will happen to the anagrams?

capitol optical topical

danger gander garden ranged

lameness maleness nameless salesmen

How can we overload .equals()?

Look at "danger" or 1001101000000100010….

How can we sort with Collections.sort or Arrays.sort

Elements sorted must be comparable/sortable

Must implement the java.lang.Comparable interface
• Return negative, zero, positive number depending on less

than, equal to, or greater than

• What is method signature?

CPS 100 2.14

Anaword objects with options

Can we use different canonical forms in different contexts?

Could have Anaword, FingerPrintAnaword, SortAnaword

What possible issues arise? What behavior is different in
subclasses?

• If there’s no difference in behavior, don’t have subclasses

Alternative, make canonical/normalize method a class

Turn a function/idea into a class, then let the class vary to
encapsulate different methods

Normalization done at construction time or later

Where is normalizer object created? When?

CPS 100 2.15

Anagram: Using Normalizers

How can we normalize an Anaword object differently?

Call normalize explicitly on all Anaword objects

Have Anaword objects normalize themselves

Advantages? Disadvantages?

If Anaword objects normalize themselves, how can we
experiment with different normalization techniques?

Gut and paste. Problems? Versions? Saved code?

What about using save-as and several .java files?

What about deciding at runtime on normalization?

We need inheritance!

CPS 100 2.16

Normalizer hierarchy

Anaword objects normalize themselves

Where does the normalizer come from?

• Passed in at construction time

• Obtained from normalizer factory

• Other approaches?

How is Normalizer used?

Normalizer is conceptually an interface

Different implementations of the interface have different
behavior (guts) but same skin (sort of)

