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Today’s topics

•• GraphsGraphs

–– Basics  & typesBasics  & types

–– PropertiesProperties

–– ConnectivityConnectivity

–– Hamilton & Euler PathsHamilton & Euler Paths

•• Reading: Sections Reading: Sections 8.1-8.58.1-8.5
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Simple Graphs

•• Correspond to symmetric,Correspond to symmetric,

irreflexiveirreflexive binary relations  binary relations RR..

•• A A simple graphsimple graph  GG=(=(VV,,EE))

consists of:consists of:

–– a set a set VV of  of verticesvertices or or nodes nodes ( (VV corresponds to corresponds to

the universe of the relation the universe of the relation RR),),

–– a set a set EE of  of edgesedges /  / arcsarcs /  / linkslinks: unordered pairs: unordered pairs

of of [distinct][distinct] elements  elements uu,,vv    VV, such that , such that uRvuRv..

Visual Representation

of a Simple Graph
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•• Let Let VV be the set of states in the far- be the set of states in the far-

southeastern U.S.:southeastern U.S.:

––I.e., I.e., VV={FL, GA, AL, MS, LA, SC, TN, NC}={FL, GA, AL, MS, LA, SC, TN, NC}

•• Let Let EE={{={{uu,,vv}|}|u u adjoins adjoins vv}}

={{FL,GA},{FL,AL},{FL,MS},={{FL,GA},{FL,AL},{FL,MS},

   {FL,LA},{GA,AL},{AL,MS},   {FL,LA},{GA,AL},{AL,MS},

   {MS,LA},{GA,SC},{GA,TN},   {MS,LA},{GA,SC},{GA,TN},

   {SC,NC},{NC,TN},{MS,TN},   {SC,NC},{NC,TN},{MS,TN},

   {MS,AL}}   {MS,AL}}

Example of a Simple Graph

TN

ALMS

LA

SC

GA

FL

NC
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Graph example

•• Can the edge weights below  be correct forCan the edge weights below  be correct for

any group of cities?any group of cities?
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Multigraphs

•• Like simple graphs, but there may be Like simple graphs, but there may be moremore

than onethan one edge connecting two given nodes. edge connecting two given nodes.

•• A A multigraphmultigraph  GG=(=(VV, , EE, , f f )) consists of a set consists of a set

VV of vertices, a set  of vertices, a set EE of edges (as primitive of edges (as primitive

objects), and a functionobjects), and a function

ff::EE {{{{uu,,vv}|}|uu,,vv VV    uu vv}}..

•• E.g.E.g., nodes are cities, edges, nodes are cities, edges

are segments of major highways.are segments of major highways.

Parallel

edges
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Pseudographs

•• Like a Like a multigraphmultigraph, but edges connecting a node to, but edges connecting a node to
itself are allowed.  itself are allowed.  ((RR may be reflexive.) may be reflexive.)

•• A A pseudographpseudograph  GG=(=(VV, , EE, , f f )) where where
ff::EE {{{{uu,,vv}|}|uu,,vv VV}}.  Edge .  Edge ee EE is a  is a looploop if if

ff((ee)={)={uu,,uu}={}={uu}}..

•• E.g.E.g., nodes are campsites, nodes are campsites
in a state park, edges arein a state park, edges are
hiking trails through thehiking trails through the
woods.woods.
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Directed Graphs

•• Correspond to arbitrary binary relations Correspond to arbitrary binary relations RR,,

which need not be symmetric.which need not be symmetric.

•• A A directed graphdirected graph ( (VV,,EE) consists of a set of) consists of a set of

vertices vertices VV and a binary relation  and a binary relation EE on  on VV..

•• E.g.E.g.: : VV = set of People, = set of People,

EE={(={(xx,,yy) | ) | xx loves  loves yy}}
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Directed Multigraphs

•• Like directed graphs, but there may beLike directed graphs, but there may be
more than one arc from a node to another.more than one arc from a node to another.

•• A A directed directed multigraphmultigraph  GG=(=(VV, , EE, , f f )) consists consists
of a set of a set VV of vertices, a set  of vertices, a set EE of edges, and of edges, and
a function a function ff::EE VV VV..

•• E.g.E.g., , VV=web pages,=web pages,
EE=hyperlinks.  =hyperlinks.  The WWW isThe WWW is
a directed a directed multigraphmultigraph......
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Types of Graphs: Summary

•• Summary of the bookSummary of the book’’s definitions.s definitions.

•• Keep in mind this terminology is not fullyKeep in mind this terminology is not fully

standardized across different authors...standardized across different authors...

Term

Edge

type

Multiple

edges ok?

Self-

loops ok?

Simple graph Undir. No No

Multigraph Undir. Yes No

Pseudograph Undir. Yes Yes

Directed graph Directed No Yes

Directed multigraph Directed Yes Yes
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§8.2: Graph Terminology

You need to learn the following terms:You need to learn the following terms:

•• Adjacent, connects, endpoints, degree,Adjacent, connects, endpoints, degree,

initial, terminal, in-degree, out-degree,initial, terminal, in-degree, out-degree,

complete, cycles, wheels, n-cubes, bipartite,complete, cycles, wheels, n-cubes, bipartite,

subgraphsubgraph, union., union.
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Adjacency

Let Let GG be an undirected graph with edge set  be an undirected graph with edge set EE..

Let Let ee EE be (or map to) the pair  be (or map to) the pair {{uu,,vv}}.  Then.  Then

we say:we say:

•• uu, , vv are  are adjacentadjacent /  / neighborsneighbors /  / connectedconnected..

•• Edge Edge ee is  is incident withincident with vertices  vertices uu and  and vv..

•• Edge Edge ee  connectsconnects  uu and  and vv..

•• Vertices Vertices uu and  and vv are  are endpointsendpoints of edge  of edge ee..
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Degree of a Vertex

•• Let Let GG be an undirected graph,  be an undirected graph, vv VV a vertex. a vertex.

•• The The degreedegree of  of vv, , deg(deg(vv)), is its number of, is its number of

incident edges. (Except that any self-loopsincident edges. (Except that any self-loops

are counted twice.)are counted twice.)

•• A vertex with degree 0 is called A vertex with degree 0 is called isolatedisolated..

•• A vertex of degree 1 is called A vertex of degree 1 is called pendantpendant..
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Handshaking Theorem

•• Let Let GG be an undirected (simple, multi-, or be an undirected (simple, multi-, or

pseudo-) graph with vertex set pseudo-) graph with vertex set VV and edge and edge

set set EE.  Then.  Then

•• Corollary: Corollary: Any undirected graph has anAny undirected graph has an

even number of vertices of odd degree.even number of vertices of odd degree.

Ev

Vv

2)deg( =
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Directed Adjacency

•• Let Let GG be a directed (possibly multi-) graph, be a directed (possibly multi-) graph,
and let and let ee be an edge of  be an edge of GG that is (or maps that is (or maps
to) (to) (uu,,vv).  Then we say:).  Then we say:

–– uu is  is adjacent toadjacent to  vv, , vv is  is adjacent fromadjacent from  uu

–– ee  comes fromcomes from u, e  u, e goes togoes to v. v.

–– e connects u to ve connects u to v, , e goes from u to ve goes from u to v

–– the the initial vertexinitial vertex of  of ee is  is uu

–– the the terminal vertexterminal vertex of  of ee is  is vv
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Directed Degree

•• Let Let GG be a directed graph,  be a directed graph, vv a vertex of  a vertex of GG..

–– The The in-degreein-degree of  of vv, , degdeg ((vv)), is the number of, is the number of

edges going to edges going to vv..

–– The The out-degreeout-degree of  of vv, , degdeg++((vv)), is the number of, is the number of

edges coming from edges coming from vv..

–– The The degreedegree of  of vv, , deg(deg(vv):): degdeg ((vv)+)+degdeg++((vv)), is, is

the sum of the sum of vv’’ss in-degree and out-degree. in-degree and out-degree.

CompSci 102 © Michael Frank
16.16

Directed Handshaking Theorem

•• Let Let GG be a directed (possibly multi-) graph be a directed (possibly multi-) graph

with vertex set with vertex set VV and edge set  and edge set EE.  Then:.  Then:

•• Note that the degree of a node is unchangedNote that the degree of a node is unchanged

by whether we consider its edges to beby whether we consider its edges to be

directed or undirected.directed or undirected.

Evvv

VvVvVv

===
+ )deg(

2

1
)(deg)(deg
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Special Graph Structures

Special cases of undirected graph structures:Special cases of undirected graph structures:

•• Complete graphs Complete graphs KKnn

•• Cycles Cycles CCnn

•• Wheels Wheels WWnn

•• nn-Cubes -Cubes QQnn

•• Bipartite graphsBipartite graphs

•• Complete bipartite graphs Complete bipartite graphs KKmm,,nn

CompSci 102 © Michael Frank
16.18

Complete Graphs

•• For any For any nn NN, a , a complete graphcomplete graph on  on nn

vertices, vertices, KKnn, is a simple graph with , is a simple graph with nn nodes nodes

in which every node is adjacent to everyin which every node is adjacent to every

other node: other node: uu,,vv VV: : uu vv {{uu,,vv}} EE..

K1 K2
K3

K4 K5 K6

Note that Kn has                edges.
2

)1(1

1

=
=

nn
i

n

i
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Cycles

•• For any For any nn 33, a , a cyclecycle on  on nn vertices,  vertices, CCnn, is a, is a

simple graph where simple graph where VV={={vv11,,vv22,,…… , ,vvnn}} and and

EE={{={{vv11,,vv22},{},{vv22,,vv33},},……,{,{vvnn 11,,vvnn},{},{vvnn,,vv11}}}}..

C3 C4 C5 C6 C7
C8

How many edges are there in Cn? 
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Wheels

•• For any For any nn 33, a , a wheelwheel  WWnn, is a simple graph, is a simple graph

obtained by taking the cycle obtained by taking the cycle CCnn and adding and adding

one extra vertex one extra vertex vvhubhub and  and nn extra edges extra edges

{{{{vvhubhub,,vv11}, {}, {vvhubhub,,vv22},},……,{,{vvhubhub,,vvnn}}}}..

W3 W4 W5 W6 W7
W8

How many edges are there in Wn? 
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n-cubes (hypercubes)

•• For any For any nn NN, the hypercube , the hypercube QQnn is a simple is a simple

graph consisting of two copies of Qgraph consisting of two copies of Qnn-1-1

connected together at corresponding nodes.connected together at corresponding nodes.

QQ00 has 1 node. has 1 node.

Q0
Q1 Q2 Q3

Q4

Number of vertices: 2n.  Number of edges:Exercise to try! 
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n-cubes (hypercubes)

•• For any For any nn NN, the hypercube , the hypercube QQnn can be can be

defined recursively as follows:defined recursively as follows:

––   QQ00={{={{vv00},}, }} (one node and no edges) (one node and no edges)

–– For any For any nn NN, if , if QQnn==((VV,,EE)), where , where VV={={vv11,,……,,vvaa}}

andand  EE={={ee11,,……,,eebb}}, then , then QQnn+1+1=(=(VV {{vv11´,´,……,,vvaa´́}}, , EE

{{ee11´,´,……,,eebb´}´} {{{{vv11,,vv11´́},{},{vv22,,vv22´́},},……,,

{{vvaa,,vvaa´́}}}})) where  where vv11´,´,……,,vvaa´ ´ are new vertices,are new vertices,

and where if and where if eeii={={vvjj,,vvkk}} then  then eeii´={´={vvjj´,´,vvkk´}´}..
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•• DefDef’’nn.:.: A graph  A graph GG=(=(VV,,EE)) is  is bipartitebipartite (two- (two-

part) part) iffiff  VV =  = VV11 VV22 where  where VV11 VV22==  and and

ee EE: : vv11 VV11,,vv22 VV22: : ee={={vv11,,vv22}}..

•• In English:In English: The graph can The graph can

be divided into two partsbe divided into two parts

in such a way that all edgesin such a way that all edges

go between the two parts.go between the two parts.

Bipartite Graphs

V1 V2
This definition can easily be adapted for the 

case of multigraphs and directed graphs as well. Can represent with

zero-one matrices.
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Complete Bipartite Graphs

•• For For mm,,nn NN, the , the complete bipartite graphcomplete bipartite graph

KKmm,,nn is a bipartite graph where  is a bipartite graph where ||VV11| = | = mm,,
||VV22| = | = nn, and , and EE = {{ = {{vv11,,vv22}|}|vv11 VV11    vv22 VV22}}..

–– That is, there are That is, there are mm nodes nodes
in the left part, in the left part, nn nodes in nodes in
the right part, and everythe right part, and every
node in the left part isnode in the left part is
connected to every nodeconnected to every node
in the right part.in the right part.

K4,3

Km,n has _____ nodes

and _____ edges.
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Subgraphs

•• A A subgraphsubgraph of a graph  of a graph GG=(=(VV,,EE)) is a graph is a graph

HH=(=(WW,,FF)) where  where WW VV and  and FF EE..

G H
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Graph Unions

•• The The unionunion  GG11 GG22 of two simple graphs of two simple graphs

GG11=(=(VV11, , EE11)) and  and GG22=(=(VV22,,EE22)) is the simple is the simple

graph graph ((VV11 VV22, , EE11 EE22))..

a b c

d e

a b c

d f
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§8.3: Graph Representations & Isomorphism

•• Graph representations:Graph representations:

–– Adjacency lists.Adjacency lists.

–– Adjacency matrices.Adjacency matrices.

–– Incidence matrices.Incidence matrices.

•• Graph isomorphism:Graph isomorphism:

–– Two graphs are isomorphic Two graphs are isomorphic iffiff they are they are

identical except for their node names.identical except for their node names.
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Adjacency Lists

•• A table with 1 row per vertex, listing itsA table with 1 row per vertex, listing its

adjacent vertices.adjacent vertices.

a b

dc

f
e

Vertex

Adjacent

Vertices

a

b

b, c

a, c, e, f

c a, b, f

d

e b

f c, b
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Directed Adjacency Lists

•• 1 row per node, listing the terminal nodes1 row per node, listing the terminal nodes

of each edge incident from that node.of each edge incident from that node.
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Adjacency Matrices

•• A way to represent simple graphsA way to represent simple graphs

–– possibly with self-loops.possibly with self-loops.

•• Matrix Matrix AA=[=[aaijij]], where , where aaijij is 1 if  is 1 if {{vvii, , vvjj}} is an is an

edge of edge of GG, and is 0 otherwise., and is 0 otherwise.

•• Can extend to Can extend to pseudographspseudographs by letting each by letting each

matrix elements be the number of linksmatrix elements be the number of links

(possibly >1) between the nodes.(possibly >1) between the nodes.
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Graph Isomorphism

•• Formal definition:Formal definition:

–– Simple graphs Simple graphs GG11=(=(VV11, , EE11)) and  and GG22=(=(VV22, , EE22)) are are

isomorphicisomorphic  iffiff   a  a bijectionbijection  ff::VV11 VV22 such that such that

  aa,,bb VV11, , aa and  and bb are adjacent in  are adjacent in GG11  iffiff  ff((aa))

and and ff((bb)) are adjacent in  are adjacent in GG22..

–– ff is the  is the ““renamingrenaming”” function between the two function between the two

node sets that makes the two graphs identical.node sets that makes the two graphs identical.

–– This definition can easily be extended to otherThis definition can easily be extended to other

types of graphs.types of graphs.
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Graph Invariants under Isomorphism

NecessaryNecessary but not  but not sufficientsufficient conditions for conditions for

GG11=(=(VV11, , EE11)) to be isomorphic to  to be isomorphic to GG22=(=(VV22, , EE22))::

–– We must have that We must have that ||VV1|=|1|=|VV2|2|, and , and ||EE1|=|1|=|EE2|2|..

–– The number of vertices with degree The number of vertices with degree nn is the is the

same in both graphs.same in both graphs.

–– For every proper For every proper subgraphsubgraph  gg of one graph, of one graph,

there is a proper there is a proper subgraphsubgraph of the other graph of the other graph

that is isomorphic to that is isomorphic to gg..
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Isomorphism Example

•• If isomorphic, label the 2nd graph to showIf isomorphic, label the 2nd graph to show

the isomorphism, else identify difference.the isomorphism, else identify difference.

a

b

cd

e
f

b

d

a

e
fc
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Are These Isomorphic?

•• If isomorphic, label the 2nd graph to showIf isomorphic, label the 2nd graph to show

the isomorphism, else identify difference.the isomorphism, else identify difference.

a
b

c

d

e

•  Same # of

vertices

•  Same # of

edges
•  Different #

of verts of

degree 2!

(1 vs 3)
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§8.4: Connectivity

•• In an undirected graph, a In an undirected graph, a path of length npath of length n

from u to vfrom u to v is a sequence of adjacent edges is a sequence of adjacent edges

going from vertex going from vertex u u to vertex to vertex vv..

•• A path is a A path is a circuitcircuit if  if u=vu=v..

•• A path A path traversestraverses the vertices along it. the vertices along it.

•• A path is A path is simplesimple if it contains no edge more if it contains no edge more

than once.than once.
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Paths in Directed Graphs

•• Same as in undirected graphs, but the pathSame as in undirected graphs, but the path

must go in the direction of the arrows.must go in the direction of the arrows.
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Connectedness

•• An undirected graph is An undirected graph is connectedconnected  iffiff there there

is a path between every pair of distinctis a path between every pair of distinct

vertices in the graph.vertices in the graph.

•• Theorem:Theorem: There is a  There is a simplesimple path between path between

any pair of vertices in a connectedany pair of vertices in a connected

undirected graph.undirected graph.

•• Connected componentConnected component: connected : connected subgraphsubgraph

•• A A cut vertexcut vertex or  or cut edgecut edge separates 1 separates 1

connected component into 2 if removed.connected component into 2 if removed.
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Directed Connectedness

•• A directed graph is A directed graph is strongly connectedstrongly connected  iffiff

there is a directed path from there is a directed path from aa to  to bb for any for any

two two vertsverts  aa and  and bb..

•• It is It is weakly connectedweakly connected  iffiff the underlying the underlying

undirectedundirected graph ( graph (i.e.i.e., with edge directions, with edge directions

removed) is connected.removed) is connected.

•• Note Note stronglystrongly implies  implies weaklyweakly but not vice- but not vice-

versa.versa.
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Paths & Isomorphism

•• Note that connectedness, and the existenceNote that connectedness, and the existence

of a circuit or simple circuit of length of a circuit or simple circuit of length kk are are

graph invariants with respect tograph invariants with respect to

isomorphism.isomorphism.
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Counting Paths w Adjacency Matrices

•• Let Let AA be the adjacency matrix of graph  be the adjacency matrix of graph GG..

•• The number of paths of length The number of paths of length kk from  from vvii to to

vvjj is equal to  is equal to ((AAkk))i,ji,j..

–– The notation The notation ((MM))i,ji,j denotes  denotes mmi,ji,j where where

[[mmi,ji,j] = ] = MM..
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§8.5: Euler & Hamilton Paths

•• An An EEuler circuituler circuit in a graph  in a graph GG is a simple is a simple

circuit containing every circuit containing every eedge of dge of GG..

•• An An EEuler pathuler path in  in GG is a simple path is a simple path

containing every containing every eedge of dge of GG..

•• A A HamilHamiltton circuiton circuit is a circuit that is a circuit that

traverses each vertraverses each verttex in ex in GG exactly once. exactly once.

•• A A HamilHamiltton pathon path is a path that traverses is a path that traverses

each vereach verttex in ex in GG exactly once. exactly once.
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Bridges of Königsberg Problem

•• Can we walk through town, crossing eachCan we walk through town, crossing each

bridge exactly once, and return to start?bridge exactly once, and return to start?

A

B

C

D

The original problem
Equivalent multigraph
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Euler Path Theorems

•• Theorem:Theorem: A connected  A connected multigraphmultigraph has an has an

Euler circuit Euler circuit iffiff each vertex has even degree. each vertex has even degree.

–– Proof:Proof:

•• (( ) ) The circuit contributes 2 to degree of each node.The circuit contributes 2 to degree of each node.

•• (( )) By construction using algorithm on p. 580-581 By construction using algorithm on p. 580-581

•• Theorem:Theorem:  A connected   A connected multigraphmultigraph has an has an

Euler path (but not an Euler circuit) Euler path (but not an Euler circuit) iffiff it has it has

exactly 2 vertices of odd degree.exactly 2 vertices of odd degree.

–– One is the start, the other is the end.One is the start, the other is the end.
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Euler Circuit Algorithm

•• Begin with any arbitrary node.Begin with any arbitrary node.

•• Construct a simple path from it till you getConstruct a simple path from it till you get

back to start.back to start.

•• Repeat for each remaining Repeat for each remaining subgraphsubgraph,,

splicing results back into original cycle.splicing results back into original cycle.
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Round-the-World Puzzle

•• Can we traverse all the vertices of aCan we traverse all the vertices of a

dodecahedron, visiting each once?`dodecahedron, visiting each once?`

Dodecahedron puzzle
Equivalent

graph
Pegboard version
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Hamiltonian Path Theorems

•• DiracDirac’’ss theorem theorem:  If (but :  If (but notnot only if)  only if) GG is is

connected, simple, has connected, simple, has nn 33 vertices, and  vertices, and vv

deg(deg(vv)) nn/2/2, then , then GG has a Hamilton circuit. has a Hamilton circuit.

–– OreOre’’s corollary:s corollary:  If   If GG is connected, simple, is connected, simple,

has has nn 33 nodes, and  nodes, and deg(deg(uu)+deg()+deg(vv)) nn for every for every

pair pair uu,,vv of non-adjacent nodes, then  of non-adjacent nodes, then GG has a has a

Hamilton circuit.Hamilton circuit.


