Today’s topics

» Graphs
— Basics & types
— Properties
— Connectivity
— Hamilton & Euler Paths

» Reading: Sections 8.1-8.5
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16.1

Simple Graphs

 Correspond to symmetric,
irreflexive binary relations R.

* A Slmple g_raph G_(V’E) Visual Representation
consists of: of a Simple Graph

— a set V of vertices or nodes (V corresponds to
the universe of the relation R),

— a set E of edges / arcs / links: unordered pairs
of [distinct] elements u,v € V, such that uRv.

72
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16.2

Example of a Simple Graph

e LetV be the set of states in the far-
southeastern U.S.:
—l.e., V={FL, GA, AL, MS, LA, SC, TN, NC}

e Let E={{u,v}u adjoins v}

={{FL,GA},{FL,AL}{FL,MS}, N
{FL,LA}{GAAL}{AL,MS}

{MS,LA}{GA SC}{GA TN}
{SC.NC}{NC, TN}.{MS TN} L A

{MS.AL}}
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16.3

Graph example

» Can the edge weights below be correct for
any group of cities?

Augusta

214

Columbus

Montpelier 1sg

Charleston 8
12| ° a1 Boston

Annapolis

© Michael Frank
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Multigraphs

* Like simple graphs, but there may be more
than one edge connecting two given nodes.

» A multigraph G=(V, E, f) consists of a set
V of vertices, a set E of edges (as primitive
objects), and a function ¥ parallel
f.E—={{u,v}u,v€V A u=v}. edges
» E.g., nodes are cities, edges
are segments of major highways.
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Pseudographs

* Like a multigraph, but edges connecting a node to
itself are allowed. (R may be reflexive.)

» A pseudograph G=(V, E, f) where
f.E—={{u,v}u,veV}. Edge ecE isalodp if
f(e)={u,u}={u}.

» E.g., nodes are campsites
In a state park, edges are
hiking trails through the
woods.
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Directed Graphs

 Correspond to arbitrary binary relations R,
which need not be symmetric.

» A directed graph (V,E) consists of a set of
vertices V and a binary relation E on V.

» E.g.: V =set of People,
E={(x,y) | x loves y}
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Directed Multigraphs

* Like directed graphs, but there may be
more than one arc from a node to another.

A directed multigraph G=(V, E, f) consists
of a set V of vertices, a set E of edges, and
a function .E—=VxV,

* E.g., V=web pages,

E=hyperlinks. The WWW is

a directed multigraph...
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Types of Graphs: Summary

» Summary of the book’s definitions.

» Keep in mind this terminology is not fully

standardized across different authors...
Edge Multiple Self-

88.2: Graph Terminology

You need to learn the following terms:

» Adjacent, connects, endpoints, degree,
initial, terminal, in-degree, out-degree,
complete, cycles, wheels, n-cubes, bipartite,

Term type edges ok? loops ok? b h .
Simple graph Undir. No No subgrapn, union.
Multigraph Undir. Yes No
Pseudograph Undir. Yes Yes
Directed graph Directed No Yes
Directed multigraph  Directed Yes Yes
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Adjacency Degree of a Vertex

Let G be an undirected graph with edge set E.
Let ecE be (or map to) the pair {u,v}. Then

we say:
e U, v are adjacent / neighbors / connected.
 Edge e is incident with vertices u and v.
 Edge e connects u and v.
* Vertices u and v are endpoints of edge e.
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Let G be an undirected graph, v&V a vertex.

The degree of v, deg(v), is its number of
incident edges. (Except that any self-loops
are counted twice.)

A vertex with degree 0 is called isolated.
A vertex of degree 1 is called pendant.
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Handshaking Theorem

* Let G be an undirected (simple, multi-, or
pseudo-) graph with vertex set V and edge
set E. Then

;deg(v) =2|E

» Corollary: Any undirected graph has an
even number of vertices of odd degree.
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Directed Adjacency

» Let G be a directed (possibly multi-) graph,
and let e be an edge of G that is (or maps
to) (u,v). Then we say:

— uis adjacent to v, v is adjacent from u
— e comes from u, e goes to v.
—econnectsutov,e goes fromutov

— the initial vertex of e is u

— the terminal vertex of e is v
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Directed Degree

» Let G be a directed graph, v a vertex of G.
— The in-degree of v, deg-(v), is the number of
edges going to v.
— The out-degree of v, deg*(v), is the number of
edges coming from v.
— The degree of v, deg(v):=deg-(v)+deg*(v), is
the sum of v’s in-degree and out-degree.
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Directed Handshaking Theorem

» Let G be a directed (possibly multi-) graph
with vertex set V and edge set E. Then:

V; deg™(v) = ; deg*(v) = %; deg(v) = |E|

 Note that the degree of a node is unchanged
by whether we consider its edges to be
directed or undirected.
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Special Graph Structures

Special cases of undirected graph structures:
» Complete graphs K,

Cycles C,

Wheels W,

n-Cubes Q,

Bipartite graphs

« Complete bipartite graphs K, ,
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Complete Graphs

e For any nEN, a complete graph on n
vertices, K., is a simple graph with n nodes

In which every node is adjacent to every
other node: Yu,veV: u=v<={u,v}cE.

VARG &

Note that K, has 2l=@ edges.
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Cycles

« For any n=3, a cycle on n vertices, C, is a
simple graph where V={v,,v,,... ,v,} and

E:{{Vl,Vz},{Vz,V3}, e ’{Vn—l’vn}’{vn’vl}}'

gegeleisie

How many edges are there in C_?
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Wheels

« For any n=3, a wheel W, is a simple graph
obtained by taking the cycle C, and adding
one extra vertex v, and n extra edges

{{thb’vl}’ {thb’Vz}’ e ’{thb’vn}}-

r PR

How many edges are there in W, ?
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n-cubes (hypercubes)

» For any nEN, the hypercube Q,, is a simple
graph consisting of two copies of Q,,
connected together at corresponding nodes.

Q, has 1 node.

Qozm@@

Q Q

Number of vertices: 2“. Number of edges:Exercise to try!
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n-cubes (hypercubes)

» For any nEN, the hypercube Q, can be
defined recursively as follows:

— Qu={{vo}.9} (one node and no edges)

— For any neN, if Q,=(V,E), where V={v,,...,v }
and E={e,,...,e,}, then Q,.,.=(VU{v,",....v, }, E
U{e, ,....e, JU{{v,v; 1 {vo,vy 3o,

{v v, }}) wherev,’,...,v,” are new vertices,
and where if e;={v;,v } then e;"={v;",v,"}.
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Bipartite Graphs

e Def’n.: A graph G=(V,E) is bipartite (two-
part) iff V =V, NV, where V,UV,=¢ and
Ve€E: dv,€V,,v,€V,: e={v,,V,}.

 In English: The graph can
be divided into two parts
in such a way that all edges ©
go between the two parts.

Vi Vv,

This definition can easily be adapted for the

case of multigraphs and directed graphs as well. Can represent with
zero-one matrices.
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Complete Bipartite Graphs

e For m,nEN, the complete bipartite graph
Konisa blpartlte graph where |V | =
IV,| = n, and E = {{v,,V,}]v,EV, A vzevz}

— That is, there are m nodes

K
in the left part, n nodes in >
the right part, and every
node in the left part is
ponnected to every node K, has nodes
in the right part. and edges.
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Subgraphs

» A subgraph of a graph G=(V,E) is a graph
H=(W,F) where WCV and FCE.

e

CompSci 102 © Michael Frank 1625

Graph Unions

» The union G,UG, of two simple graphs
G,=(V,, E)) and G,=(V,,E,) is the simple
graph (V,UV,, E,UE,).

S
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88.3: Graph Representations & Isomorphism

» Graph representations:
— Adjacency lists.
— Adjacency matrices.
— Incidence matrices.
 Graph isomorphism:

— Two graphs are isomorphic iff they are
identical except for their node names.
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Adjacency Lists

A table with 1 row per vertex, listing its

adjacent vertices. Adjacent

a b Vertex |Vertices
’ a |bc
Ce b |acef
f a,b,f

b
c, b

—~ D O O
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Directed Adjacency Lists

1 row per node, listing the terminal nodes
of each edge incident from that node.
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Adjacency Matrices

» A way to represent simple graphs

— possibly with self-loops.

Matrix A=[a;], where a; is 1 if {v;, v;} isan
edge of G, and is O otherwise.

Can extend to pseudographs by letting each

matrix elements be the number of links
(possibly >1) between the nodes.
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Graph Isomorphism

« Formal definition:
— Simple graphs G,=(V,, E,) and G,=(V,, E,) are
isomorphic iff 3 a bijection f:V,;—V, such that
V a,beV,, a and b are adjacent in G, iff f(a)
and f(b) are adjacent in G,.
— fis the “renaming” function between the two
node sets that makes the two graphs identical.

— This definition can easily be extended to other
types of graphs.
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Graph Invariants under Isomorphism

Necessary but not sufficient conditions for
G,=(V,, E,) to be isomorphic to G,=(V,, E,):
— We must have that |[V1|=|V2|, and |E1|=|E2|.

— The number of vertices with degree n is the
same in both graphs.

— For every proper subgraph g of one graph,
there is a proper subgraph of the other graph
that is isomorphic to g.
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Isomorphism Example

* If isomorphic, label the 2nd graph to show
the isomorphism, else identify difference.
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Are These Isomorphic?

« If isomorphic, label the 2nd graph to show
the isomorphism, else identify difference.

e Same # of
3 vertices

v 0 « Same # of

T~ edges
Q e Different #
of verts of
c e degree 2!
(Lvs3)
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88.4: Connectivity

In an undirected graph, a path of length n
from u to v is a sequence of adjacent edges
going from vertex u to vertex v.

A path is a circuit if u=v.
A path traverses the vertices along it.

A path is simple if it contains no edge more
than once.
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Paths in Directed Graphs

e Same as in undirected graphs, but the path
must go in the direction of the arrows.
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Connectedness

« An undirected graph is connected iff there
IS a path between every pair of distinct
vertices in the graph.

e Theorem: There is a simple path between
any pair of vertices in a connected
undirected graph.

» Connected component: connected subgraph
» A cut vertex or cut edge separates 1
connected component into 2 if removed.

CompS

Directed Connectedness

A directed graph is strongly connected iff
there is a directed path from a to b for any
two verts a and b,

* It is weakly connected iff the underlying
undirected graph (i.e., with edge directions
removed) is connected.

* Note strongly implies weakly but not vice-
versa.
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Paths & Isomorphism

* Note that connectedness, and the existence
of a circuit or simple circuit of length k are
graph invariants with respect to
iIsomorphism.
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Counting Paths w Adjacency Matrices

 Let A be the adjacency matrix of graph G.
» The number of paths of length k from v, to
v; is equal to (A¥);;.

— The notation (M);; denotes m;; where
[mi‘j] =M.
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88.5: Euler & Hamilton Paths

An Euler circuit in a graph G is a simple
circuit containing every edge of G.

An Euler path in G is a simple path
containing every edge of G.

A Hamilton circuit is a circuit that
traverses each vertex in G exactly once.

A Hamilton path is a path that traverses
each vertex in G exactly once.
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Bridges of Kénigsberg Problem

« Can we walk through town, crossing each
bridge exactly once, and return to start?

(o s o )
NS [/_4 (=

The original problem Equivalent multigraph
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Euler Path Theorems

» Theorem: A connected multigraph has an
Euler circuit iff each vertex has even degree.
— Proof:
(=) The circuit contributes 2 to degree of each node.
* («) By construction using algorithm on p. 580-581
e Theorem: A connected multigraph has an
Euler path (but not an Euler circuit) iff it has
exactly 2 vertices of odd degree.
— One is the start, the other is the end.
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Euler Circuit Algorithm

 Begin with any arbitrary node.

» Construct a simple path from it till you get
back to start.

» Repeat for each remaining subgraph,
splicing results back into original cycle.
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Round-the-World Puzzle

e Can we traverse all the vertices of a

Equivalent

Dodecahedron puzzle
raph

Pegboard version
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Hamiltonian Path Theorems

* Dirac’s theorem: If (but not only if) G is
connected, simple, has n=3 vertices, and Vv
deg(v)=n/2, then G has a Hamilton circuit.

— Ore’s corollary: If G is connected, simple,
has n>3 nodes, and deg(u)+deg(v)>n for every
pair u,v of non-adjacent nodes, then G has a
Hamilton circuit.
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