Today's topics

- Graphs
- Basics \& types
- Properties
- Connectivity
- Hamilton \& Euler Paths
- Reading: Sections 8.1-8.5

Example of a Simple Graph

- Let V be the set of states in the farsoutheastern U.S.:

```
-I.e., V={FL, GA, AL, MS, LA, SC, TN, NC}
```

- Let $E=\{\{u, v\} \mid u$ adjoins $v\}$ $=\{\{\mathrm{FL}, \mathrm{GA}\},\{\mathrm{FL}, \mathrm{AL}\},\{\mathrm{FL}, \mathrm{MS}\}$, \{FL,LA\},\{GA,AL\},\{AL,MS \} \{MS,LA \},\{GA,SC\},\{GA,TN\} \{SC,NC\},\{NC,TN\},\{MS,TN\} \{MS,AL\}\}

Simple Graphs

- Correspond to symmetric, irreflexive binary relations R.
- A simple graph $G=(V, E)$ consists of:

Visual Representation of a Simple Graph

- a set V of vertices or nodes (V corresponds to the universe of the relation R),
- a set E of edges / arcs / links: unordered pairs of [distinct] elements $u, v \in V$, such that $u R v$.

Graph example

- Can the edge weights below be correct for any group of cities?

Multigraphs

- Like simple graphs, but there may be more than one edge connecting two given nodes.
- A multigraph $G=(V, E, f)$ consists of a set V of vertices, a set E of edges (as primitive objects), and a function $f: E \rightarrow\{\{u, v\} \mid u, v \in V \wedge u \neq v\}$.
- E.g., nodes are cities, edges are segments of major highways.

Pseudographs

- Like a multigraph, but edges connecting a node to itself are allowed. (R may be reflexive.)
- A pseudograph $G=(V, E, f)$ where $f: E \rightarrow\{\{u, v\} \mid u, v \in V\}$. Edge $e \in E$ is a loop if $f(e)=\{u, u\}=\{u\}$.
- E.g., nodes are campsites in a state park, edges are hiking trails through the woods.

Directed Graphs

- Correspond to arbitrary binary relations R, which need not be symmetric.
- A directed graph (V, E) consists of a set of vertices V and a binary relation E on V.
- E.g.: $V=$ set of People, $E=\{(x, y) \mid x$ loves $y\}$

Directed Multigraphs

- Like directed graphs, but there may be more than one arc from a node to another.
- A directed multigraph $G=(V, E, f)$ consists of a set V of vertices, a set E of edges, and a function $f: E \rightarrow V \times V$.
- E.g., $V=$ web pages, $E=$ hyperlinks. The WWW is a directed multigraph...

Types of Graphs: Summary

- Summary of the book's definitions.
- Keep in mind this terminology is not fully standardized across different authors...

Term	Edge type	Multiple edges ok?	Self- loops ok?
Simple graph	Undir.	No	No
Multigraph	Undir.	Yes	No
Pseudograph	Undir.	Yes	Yes
Directed graph	Directed	No	Yes
Directed multigraph	Directed	Yes	Yes

§8.2: Graph Terminology

You need to learn the following terms:

- Adjacent, connects, endpoints, degree, initial, terminal, in-degree, out-degree, complete, cycles, wheels, n-cubes, bipartite, subgraph, union.

Adjacency

Let G be an undirected graph with edge set E. Let $e \in E$ be (or map to) the pair $\{u, v\}$. Then we say:

- u, v are adjacent / neighbors / connected.
- Edge e is incident with vertices u and v.
- Edge e connects u and v.
- Vertices u and v are endpoints of edge e.

Handshaking Theorem

- Let G be an undirected (simple, multi-, or pseudo-) graph with vertex set V and edge set E. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

- Corollary: Any undirected graph has an even number of vertices of odd degree.

Directed Adjacency

- Let G be a directed (possibly multi-) graph, and let e be an edge of G that is (or maps to) (u, v). Then we say:
$-u$ is adjacent to v, v is adjacent from u
- e comes from u , e goes to v .
- e connects u to v, e goes from u to v
- the initial vertex of e is u
- the terminal vertex of e is v

Directed Degree

- Let G be a directed graph, v a vertex of G.
- The in-degree of $v, \operatorname{deg}^{-}(v)$, is the number of edges going to v.
- The out-degree of $v, \operatorname{deg}^{+}(v)$, is the number of edges coming from v.
- The degree of $v, \operatorname{deg}(v): \equiv \operatorname{deg}^{-}(v)+\operatorname{deg}^{+}(v)$, is the sum of v 's in-degree and out-degree.

Directed Handshaking Theorem

- Let G be a directed (possibly multi-) graph with vertex set V and edge set E. Then:

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=\frac{1}{2} \sum_{v \in V} \operatorname{deg}(v)=|E|
$$

- Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

Special Graph Structures

Special cases of undirected graph structures:

- Complete graphs K_{n}
- Cycles C ${ }_{n}$
- Wheels W_{n}
- n-Cubes Q_{n}
- Bipartite graphs
- Complete bipartite graphs $\mathrm{K}_{m, n}$

Cycles

- For any $n \geq 3$, a cycle on n vertices, C_{n}, is a simple graph where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}\right\}$.

How many edges are there in C_{n} ?

Complete Graphs

- For any $n \in \mathbf{N}$, a complete graph on n vertices, K_{n}, is a simple graph with n nodes in which every node is adjacent to every other node: $\forall u, v \in V: u \neq v \leftrightarrow\{u, v\} \in E$.

Wheels

- For any $n \geq 3$, a wheel W_{n}, is a simple graph obtained by taking the cycle C_{n} and adding one extra vertex $v_{\text {hub }}$ and n extra edges $\left\{\left\{v_{\text {hub }}, v_{1}\right\},\left\{v_{\text {hub }}, v_{2}\right\}, \ldots,\left\{v_{\text {hub }}, v_{n}\right\}\right\}$.

How many edges are there in W_{n} ?

n-cubes (hypercubes)

- For any $n \in \mathbf{N}$, the hypercube Q_{n} is a simple graph consisting of two copies of Q_{n-1} connected together at corresponding nodes. Q_{0} has 1 node.

Number of vertices: 2^{n}. Number of edges: Exercise to try!

Bipartite Graphs

- Def'n.: A graph $G=(V, E)$ is bipartite (twopart) iff $V=V_{1} \cap V_{2}$ where $V_{1} \cup V_{2}=\varnothing$ and $\forall e \in E: \exists v_{1} \in V_{1}, v_{2} \in V_{2}: e=\left\{v_{1}, v_{2}\right\}$.
- In English: The graph can be divided into two parts in such a way that all edges go between the two parts.
 zero-one matrices.

n-cubes (hypercubes)

- For any $n \in \mathbf{N}$, the hypercube Q_{n} can be defined recursively as follows:
- $\mathrm{Q}_{0}=\left\{\left\{v_{0}\right\}, \varnothing\right\}$ (one node and no edges)
- For any $n \in \mathbf{N}$, if $\mathrm{Q}_{n}=(V, E)$, where $V=\left\{v_{1}, \ldots, v_{a}\right\}$ and $E=\left\{e_{1}, \ldots, e_{b}\right\}$, then $\mathrm{Q}_{n+1}=\left(V \cup\left\{v_{1}{ }^{\prime}, \ldots, v_{a}{ }^{\prime}\right\}, E\right.$ $\cup\left\{e_{1}{ }^{\prime}, \ldots, e_{b}{ }^{\prime}\right\} \cup\left\{\left\{v_{1}, v_{1}{ }^{\prime}\right\},\left\{v_{2}, v_{2}{ }^{\prime}\right\}, \ldots\right.$, $\left.\left.\left\{v_{a}, v_{a}{ }^{\prime}\right\}\right\}\right)$ where $v_{1}{ }^{\prime}, \ldots, v_{a}{ }^{\prime}$ are new vertices, and where if $e_{i}=\left\{v_{j}, v_{k}\right\}$ then $e_{i}^{\prime}=\left\{v_{j}^{\prime}, v_{k}^{\prime}\right\}$.

Complete Bipartite Graphs

- For $m, n \in \mathbf{N}$, the complete bipartite graph
$\mathrm{K}_{m n}$ is a bipartite graph where $\left|V_{1}\right|=m$,
$\left|V_{2}\right|=n$, and $E=\left\{\left\{v_{1}, v_{2}\right\} \mid v_{1} \in V_{1} \wedge v_{2} \in V_{2}\right\}$.
- That is, there are m nodes in the left part, n nodes in the right part, and every node in the left part is connected to every node in the right part.

Subgraphs

- A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.

§8.3: Graph Representations \& Isomorphism
- Graph representations:
- Adjacency lists.
- Adjacency matrices.
- Incidence matrices.
- Graph isomorphism:
- Two graphs are isomorphic iff they are identical except for their node names.

Graph Unions

- The union $G_{1} \cup G_{2}$ of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple $\operatorname{graph}\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.

CompSci 102

Adjacency Lists

- A table with 1 row per vertex, listing its adjacent vertices.

	Adjacent Vertex
Vertices	
a	b, c
b	a, c, e, f
c	a, b, f
d	
e	b
f	c, b

Directed Adjacency Lists

- 1 row per node, listing the terminal nodes of each edge incident from that node.

Graph Isomorphism

- Formal definition:
- Simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic iff \exists a bijection $f: V_{1} \rightarrow V_{2}$ such that $\forall a, b \in V_{1}, a$ and b are adjacent in G_{1} iff $f(a)$ and $f(b)$ are adjacent in G_{2}.
$-f$ is the "renaming" function between the two node sets that makes the two graphs identical.
- This definition can easily be extended to other types of graphs.

Graph Invariants under Isomorphism

Necessary but not sufficient conditions for $G_{1}=\left(V_{1}, E_{1}\right)$ to be isomorphic to $G_{2}=\left(V_{2}, E_{2}\right)$:

- We must have that $|V 1|=|V 2|$, and $|E 1|=|E 2|$.
- The number of vertices with degree n is the same in both graphs.
- For every proper subgraph g of one graph, there is a proper subgraph of the other graph that is isomorphic to g.

Isomorphism Example

- If isomorphic, label the 2 nd graph to show the isomorphism, else identify difference.

Are These Isomorphic?

- If isomorphic, label the 2 nd graph to show the isomorphism, else identify difference.
- Same \# of

© Michael Frank

§8.4: Connectivity

- In an undirected graph, a path of length n from u to v is a sequence of adjacent edges going from vertex u to vertex v.
- A path is a circuit if $u=v$.
- A path traverses the vertices along it.
- A path is simple if it contains no edge more than once.

Paths in Directed Graphs

- Same as in undirected graphs, but the path must go in the direction of the arrows.

Connectedness

- An undirected graph is connected iff there is a path between every pair of distinct vertices in the graph.
- Theorem: There is a simple path between any pair of vertices in a connected undirected graph.
- Connected component: connected subgraph
- A cut vertex or cut edge separates 1

Comps

 connected component into 2 if removed.
Paths \& Isomorphism

- Note that connectedness, and the existence of a circuit or simple circuit of length k are graph invariants with respect to isomorphism.

Directed Connectedness

- A directed graph is strongly connected iff there is a directed path from a to b for any two verts a and b.
- It is weakly connected iff the underlying undirected graph (i.e., with edge directions removed) is connected.
- Note strongly implies weakly but not viceversa.

Counting Paths w Adjacency Matrices

- Let \mathbf{A} be the adjacency matrix of graph G.
- The number of paths of length k from v_{i} to v_{j} is equal to $\left(\mathbf{A}^{k}\right)_{i, j}$.
- The notation $(\mathbf{M})_{i, j}$ denotes $m_{i, j}$ where $\left[m_{i, j}\right]=\mathbf{M}$.

§8.5: Euler \& Hamilton Paths

- An $\underline{\text { Euler circuit in a graph } G \text { is a simple }}$ circuit containing every edge of G.
- An $\underline{\text { Euler path }}$ in G is a simple path containing every edge of G.
- A Hamilton circuit is a circuit that traverses each vertex in G exactly once.
- A Hamilton path is a path that traverses each vertex in G exactly once.

Euler Path Theorems

- Theorem: A connected multigraph has an Euler circuit iff each vertex has even degree.
- Proof:
- (\rightarrow) The circuit contributes 2 to degree of each node.
- (\leftarrow) By construction using algorithm on p. 580-581
- Theorem: A connected multigraph has an Euler path (but not an Euler circuit) iff it has exactly 2 vertices of odd degree.
- One is the start, the other is the end.

Bridges of Königsberg Problem

- Can we walk through town, crossing each bridge exactly once, and return to start?

The original problem

Euler Circuit Algorithm

- Begin with any arbitrary node.
- Construct a simple path from it till you get back to start.
- Repeat for each remaining subgraph, splicing results back into original cycle.

Round-the-World Puzzle

- Can we traverse all the vertices of a dodecahedron, visiting each once?

Dodecahedron puzzle

© Michael Frank

Pegboard version

Hamiltonian Path Theorems

- Dirac's theorem: If (but not only if) G is connected, simple, has $n \geq 3$ vertices, and $\forall v$ $\operatorname{deg}(v) \geq n / 2$, then G has a Hamilton circuit.
- Ore's corollary: If G is connected, simple, has $n \geq 3$ nodes, and $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$ for every pair u, v of non-adjacent nodes, then G has a Hamilton circuit.

