Today's topics	Simple Graphs
 Graphs Basics & types Properties Connectivity Hamilton & Euler Paths Reading: Sections 8.1-8.5 	 Correspond to symmetric, irreflexive binary relations <i>R</i>. A simple graph G=(V,E) consists of: <i>Visual Representation of a Simple Graph</i> a set <i>V</i> of <i>vertices</i> or <i>nodes</i> (<i>V</i> corresponds to the universe of the relation <i>R</i>), a set <i>E</i> of <i>edges / arcs / links</i>: unordered pairs of [distinct] elements <i>u,v</i> ∈ <i>V</i>, such that <i>uRv</i>.
CompSci 102 © Michael Frank 16.1	CompSci 102 © Michael Frank 16.2
Example of a Simple Graph	Graph example
 Let V be the set of states in the far-southeastern U.S.: -<i>I.e.</i>, V={FL, GA, AL, MS, LA, SC, TN, NC} Let E={{u,v} u adjoins v} ={{FL,GA},{FL,AL},{FL,MS}, {FL,LA},{GA,AL},{AL,MS}, {MS,LA},{GA,SC},{GA,TN}, {SC,NC},{NC,TN},{MS,TN} 	• Can the edge weights below be correct for any group of cities? Augusta Columbus Charleston Charleston 112 Annapolis 52 Dover Augusta Montpelier 156 Columbus Montpelier 156 Concord 100 100 100 100 100 100 100 10
CompSci 102 © Michael Frank 16.3	CompSci 102 © Michael Frank 16.4

Multigraphs

- Like simple graphs, but there may be *more than one* edge connecting two given nodes.
- A multigraph G=(V, E, f) consists of a set V of vertices, a set E of edges (as primitive objects), and a function $f:E \rightarrow \{\{u,v\}|u,v \in V \land u \neq v\}.$

© Michael Frank

• *E.g.*, nodes are cities, edges are segments of major highways.

Pseudographs

- Like a multigraph, but edges connecting a node to itself are allowed. (*R* may be reflexive.)
- A pseudograph G=(V, E, f) where $f:E \rightarrow \{\{u,v\} | u, v \in V\}$. Edge $e \in E$ is a loop if $f(e)=\{u,u\}=\{u\}$.
- *E.g.*, nodes are campsites in a state park, edges are hiking trails through the woods.

© Michael Frank

16.6

Directed Graphs

- Correspond to arbitrary binary relations *R*, which need not be symmetric.
- A *directed graph* (*V*,*E*) consists of a set of vertices *V* and a binary relation *E* on *V*.
- *E.g.*: *V* = set of People, *E*={(*x*,*y*) | *x* loves *y*}

Directed Multigraphs

- Like directed graphs, but there may be more than one arc from a node to another.
- A directed multigraph G=(V, E, f) consists of a set V of vertices, a set E of edges, and a function $f:E \rightarrow V \times V$.
- *E.g.*, *V*=web pages, *E*=hyperlinks. *The WWW is a directed multigraph...*

CompSci 102

16.5

Types of Graphs: Summary

- Summary of the book's definitions.
- Keep in mind this terminology is not fully standardized across different authors...

Term		Edge	Multiple	Self-
		type	edges ok?	loops ok?
Simple g	raph	Undir.	No	No
Multigra	ph	Undir.	Yes	No
Pseudog	aph	Undir.	Yes	Yes
Directed	graph	Directed	No	Yes
Directed	multigraph	Directed	Yes	Yes
Course 5 : 102		@ Michael French		
CompSci 102		© Michael Frank		16.9

§8.2: Graph Terminology

You need to learn the following terms:

• Adjacent, connects, endpoints, degree, initial, terminal, in-degree, out-degree, complete, cycles, wheels, n-cubes, bipartite, subgraph, union.

© Michael Frank	16.9	CompSci 102	© Michael Frank	16.10

Adjacency

- Let *G* be an undirected graph with edge set *E*. Let $e \in E$ be (or map to) the pair $\{u,v\}$. Then we say:
- *u*, *v* are *adjacent* / *neighbors* / *connected*.
- Edge *e* is *incident with* vertices *u* and *v*.
- Edge *e connects u* and *v*.
- Vertices *u* and *v* are *endpoints* of edge *e*.

Degree of a Vertex

- Let *G* be an undirected graph, $v \in V$ a vertex.
- The *degree* of *v*, deg(*v*), is its number of incident edges. (Except that any self-loops are counted twice.)
- A vertex with degree 0 is called *isolated*.
- A vertex of degree 1 is called *pendant*.

Handshaking Theorem

• Let *G* be an undirected (simple, multi-, or pseudo-) graph with vertex set *V* and edge set *E*. Then

 $\sum_{v \in V} \deg(v) = 2 |E|$

• **Corollary:** Any undirected graph has an even number of vertices of odd degree.

Directed Adjacency

- Let *G* be a directed (possibly multi-) graph, and let *e* be an edge of *G* that is (or maps to) (*u*,*v*). Then we say:
 - u is adjacent to v, v is adjacent from u
 - e comes from u, e goes to v.
 - e connects u to v, e goes from u to v
 - the *initial vertex* of *e* is *u*
 - the *terminal vertex* of *e* is *v*

CompSci 102 © Michae	el Frank 16.13	CompSci 102	© Michael Frank	16.14
----------------------	----------------	-------------	-----------------	-------

Directed Degree

- Let *G* be a directed graph, *v* a vertex of *G*.
 - The *in-degree* of v, deg⁻(v), is the number of edges going to v.
 - The *out-degree* of v, deg⁺(v), is the number of edges coming from v.
 - The *degree* of v, deg(v):=deg⁻(v)+deg⁺(v), is the sum of v's in-degree and out-degree.

Directed Handshaking Theorem

• Let *G* be a directed (possibly multi-) graph with vertex set *V* and edge set *E*. Then:

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = \frac{1}{2} \sum_{v \in V} \deg(v) = \left| E \right|$$

• Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

Special Graph Structures

Special cases of undirected graph structures:

- Complete graphs K_n
- Cycles C_n
- Wheels W_n
- n-Cubes Q_n
- Bipartite graphs
- Complete bipartite graphs $K_{m,n}$

Complete Graphs

For any *n*∈N, a *complete graph* on *n* vertices, K_n, is a simple graph with *n* nodes in which every node is adjacent to every other node: ∀u,v∈V: u≠v⇔{u,v}∈E.

Cycles

CompSci 102

For any *n*≥3, a *cycle* on *n* vertices, C_n, is a simple graph where V={v₁, v₂,..., v_n} and E={{v₁, v₂}, {v₂, v₃},..., {v_{n-1}, v_n}, {v_n, v₁}}.

© Michael Frank

How many edges are there in C_n ?

Wheels

For any n≥3, a wheel W_n, is a simple graph obtained by taking the cycle C_n and adding one extra vertex v_{hub} and n extra edges {{v_{hub},v₁}, {v_{hub},v₂},...,{v_{hub},v_n}}.

How many edges are there in W_n ?

```
CompSci 102
```

16.17

CompSci 102

n-cubes (hypercubes)

For any *n*∈N, the hypercube Q_n is a simple graph consisting of two copies of Q_{n-1} connected together at corresponding nodes.

 Q_0 has 1 node.

Number of vertices: 2^{*n*}*. Number of edges:Exercise to try!*

n-cubes (hypercubes)

- For any *n*∈N, the hypercube Q_n can be defined recursively as follows:
 - $Q_0 = \{\{v_0\}, \emptyset\}$ (one node and no edges)
 - For any $n \in \mathbb{N}$, if $Q_n = (V, E)$, where $V = \{v_1, ..., v_a\}$ and $E = \{e_1, ..., e_b\}$, then $Q_{n+1} = (V \cup \{v_1, ..., v_a\}, E \cup \{e_1, ..., e_b\} \cup \{\{v_1, v_1\}, \{v_2, v_2\}, ..., \{v_a, v_a\}\})$ where $v_1, ..., v_a$ are new vertices, and where if $e_i = \{v_j, v_k\}$ then $e_i = \{v_j, v_k\}$.

© Michael Frank	16.21	CompSci 102	© Michael Frank	16.22

Bipartite Graphs

- **Def'n.:** A graph G=(V,E) is *bipartite* (twopart) iff $V = V_1 \cap V_2$ where $V_1 \cup V_2 = \emptyset$ and $\forall e \in E: \exists v_1 \in V_1, v_2 \in V_2: e = \{v_1, v_2\}.$
- In English: The graph can be divided into two parts in such a way that all edges go between the two parts.

This definition can easily be adapted for the case of multigraphs and directed graphs as well.

wo parts. $V_1 V_2$ $V_1 V_2$ Can represent with zero-one matrices.

16.23

Complete Bipartite Graphs

- For $m,n \in \mathbb{N}$, the *complete bipartite graph* $K_{m,n}$ is a bipartite graph where $|V_1| = m$, $|V_2| = n$, and $E = \{\{v_1, v_2\} | v_1 \in V_1 \land v_2 \in V_2\}$.
 - That is, there are *m* nodes in the left part, *n* nodes in the right part, and every node in the left part is connected to every node in the right part.

$K_{m,n}$ has	nodes
and	_edges.

CompSci 102

Subgraphs

• A subgraph of a graph G=(V,E) is a graph H=(W,F) where $W\subseteq V$ and $F\subseteq E$.

Graph Unions

• The union $G_1 \cup G_2$ of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph $(V_1 \cup V_2, E_1 \cup E_2)$.

CompSci 102	© Michael Frank	16.25	CompSci 102	© Michael Frank	16.26

§8.3: Graph Representations & Isomorphism

- Graph representations:
 - Adjacency lists.
 - Adjacency matrices.
 - Incidence matrices.
- Graph isomorphism:
 - Two graphs are isomorphic iff they are identical except for their node names.

Adjacency Lists

• A table with 1 row per vertex, listing its adjacent vertices.

Directed Adjacency Lists Adjacency Matrices • A way to represent simple graphs • 1 row per node, listing the terminal nodes of each edge incident from that node. - possibly with self-loops. • Matrix $\mathbf{A} = [a_{ii}]$, where a_{ii} is 1 if $\{v_i, v_i\}$ is an edge of G, and is 0 otherwise. • Can extend to pseudographs by letting each matrix elements be the number of links (possibly >1) between the nodes. CompSci 102 © Michael Frank CompSci 102 © Michael Frank 16.29 16.30 **Graph Isomorphism Graph Invariants under Isomorphism** • Formal definition: *Necessary* but not *sufficient* conditions for $G_1 = (V_1, E_1)$ to be isomorphic to $G_2 = (V_2, E_2)$: - Simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are *isomorphic* iff \exists a bijection $f:V_1 \rightarrow V_2$ such that - We must have that |V1| = |V2|, and |E1| = |E2|. $\forall a,b \in V_1$, a and b are adjacent in G_1 iff f(a)- The number of vertices with degree n is the and f(b) are adjacent in G_2 . same in both graphs. -f is the "renaming" function between the two - For every proper subgraph g of one graph, node sets that makes the two graphs identical. there is a proper subgraph of the other graph - This definition can easily be extended to other that is isomorphic to g. types of graphs. © Michael Frank CompSci 102

16.31

16.32

Isomorphism Example

• If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.

© Michael Frank

Are These Isomorphic?

• If isomorphic, label the 2nd graph to show the isomorphism, else identify difference.

Same # of vertices
Same # of

edges • Different # of verts of degree 2! (1 vs 3)

CompSci	102

© Michael Frank

16.34

§8.4: Connectivity

- In an undirected graph, a *path of length n from u to v* is a sequence of adjacent edges going from vertex *u* to vertex *v*.
- A path is a *circuit* if u = v.
- A path *traverses* the vertices along it.
- A path is *simple* if it contains no edge more than once.

Paths in Directed Graphs

• Same as in undirected graphs, but the path must go in the direction of the arrows.

CompSci 102

16.33

Connectedness

- An undirected graph is *connected* iff there is a path between every pair of distinct vertices in the graph.
- **Theorem:** There is a *simple* path between any pair of vertices in a connected undirected graph.
- Connected component: connected subgraph
- A *cut vertex* or *cut edge* separates 1 connected component into 2 if removed.

Directed Connectedness

- A directed graph is *strongly connected* iff there is a directed path from *a* to *b* for any two verts *a* and *b*.
- It is *weakly connected* iff the underlying *undirected* graph (*i.e.*, with edge directions removed) is connected.
- Note *strongly* implies *weakly* but not vice-versa.

CompSci	102
---------	-----

© Michael Frank

16.38

Paths & Isomorphism

• Note that connectedness, and the existence of a circuit or simple circuit of length *k* are graph invariants with respect to isomorphism.

Counting Paths w Adjacency Matrices

- Let **A** be the adjacency matrix of graph *G*.
- The number of paths of length k from v_i to v_i is equal to $(\mathbf{A}^k)_{i,j}$.
 - The notation $(\mathbf{M})_{i,j}$ denotes $m_{i,j}$ where $[m_{i,j}] = \mathbf{M}$.

CompS

§8.5: Euler & Hamilton Paths

- An *Euler circuit* in a graph *G* is a simple circuit containing every <u>edge</u> of *G*.
- An *Euler path* in *G* is a simple path containing every <u>edge</u> of *G*.
- A *Hamilton circuit* is a circuit that traverses each vertex in *G* exactly once.
- A *Hamilton path* is a path that traverses each vertex in *G* exactly once.

Bridges of Königsberg Problem

• Can we walk through town, crossing each bridge exactly once, and return to start?

The original problem Equivalent multigraph

CompSci 102	© Michael Frank	16.41	CompSci 102	© Michael Frank	16.42

Euler Path Theorems

- **Theorem:** A connected multigraph has an Euler circuit iff each vertex has even degree.
 - Proof:
 - (\rightarrow) The circuit contributes 2 to degree of each node.
 - (\leftarrow) By construction using algorithm on p. 580-581
- **Theorem:** A connected multigraph has an Euler path (but not an Euler circuit) iff it has exactly 2 vertices of odd degree.
 - One is the start, the other is the end.

Euler Circuit Algorithm

- Begin with any arbitrary node.
- Construct a simple path from it till you get back to start.
- Repeat for each remaining subgraph, splicing results back into original cycle.

Round-the-World Puzzle

• Can we traverse all the vertices of a dodecahedron, visiting each once?`

Pegboard version

CompSci	102
---------	-----

Hamiltonian Path Theorems

- **Dirac's theorem**: If (but <u>not</u> only if) *G* is connected, simple, has $n \ge 3$ vertices, and $\forall v$ $deg(v) \ge n/2$, then G has a Hamilton circuit.
 - Ore's corollary: If G is connected, simple, has $n \ge 3$ nodes, and $\deg(u) + \deg(v) \ge n$ for every pair u, v of non-adjacent nodes, then G has a Hamilton circuit.

CompSci 102	© Michael Frank	16.45	CompSci 102	© Michael Frank	16.46