
Basics of Logic Design
Arithmetic Logic Unit (ALU)

CPS 104
Lecture 9

CPS 104 2© Alvin R. Lebeck

• Homework #3 Assigned Due March 3
• Project Groups assigned & posted to blackboard.
• Project Specification is on Web Due April 19
• Building the building blocks…
Outline
• Review
• Digital building blocks
• An Arithmetic Logic Unit (ALU)
Reading

Appendix B, Chapter 3

Today’s Lecture

CPS 104 3© Alvin R. Lebeck

Review: Digital Design

• Logic Design, Switching Circuits, Digital Logic
Recall: Everything is built from transistors
• A transistor is a switch
• It is either on or off
• On or off can represent True or False
Given a bunch of bits (0 or 1)…
• Is this instruction a lw or a beq?
• What register do I read?
• How do I add two numbers?
• Need a method to reason about complex expressions

CPS 104 4© Alvin R. Lebeck

a b c f1f2
0 0 0 0 1
0 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 1 1

Review: Boolean Functions

• Boolean functions have arguments that take two
values ({T,F} or {0,1}) and they return a single or a set
of ({T,F} or {0,1}) value(s).

• Boolean functions can always be represented by a
table called a “Truth Table”

• Example: F: {0,1}3 -> {0,1}2

CPS 104 5© Alvin R. Lebeck

F(A, B, C) = (A * B) + (~A * C)

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Review: Boolean Functions and Expressions

CPS 104 6© Alvin R. Lebeck

a
b

AND(a,b) a
b

OR(a,b)

XOR(a,b)a
b

NAND(a,b)a
b

a
b

NOR(a,b) XNOR(a,b)a
b

a NOT(a)

Review: Boolean Gates

• Gates are electronics devices that implement simple
Boolean functions

Examples

CPS 104 7© Alvin R. Lebeck

F = ~a*b + ~b*a

a

b F

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0

Boolean Functions, Gates and Circuits

• Circuits are made from a network of gates. (function
compositions).

XOR(a,b)a
b

CPS 104 8© Alvin R. Lebeck

Digital Design Examples

Input: 2 bits representing an unsigned number (n)
Output: n2 as unsigned binary number

Input: 2 bits representing an unsigned number (n)
Output: 3-n as unsigned binary number

CPS 104 9© Alvin R. Lebeck

More Design Examples

• X is a 3-bit quantity
1. Write a logic function that is true if and only if X contains at

least two 1s.

2. Implement the logic function from problem 1. using only AND,
OR and NOT gates. (Note there are no constraints on the
number of gate inputs.) By implement, I mean draw the circuit
diagram.

3. Write a logic function that is true if and only if X, when
interpreted as an unsigned binary number, is greater than the
number 5.

4. Implement the logic function from problem 3. using only AND,
OR and NOT gates. (Note there are no constraints on the
number of gate inputs.)

CPS 104 10© Alvin R. Lebeck

Parity Example

• The parity code of a binary word counts the number
of ones in a word. If there are an even number of
ones the parity code is 0, if there are an odd number
of ones the parity code is 1. For example, the parity
of 0101 is 0, and the parity of 1101 is 1.

• Construct the truth table for a function that
computes the parity of a four-bit word. Implement
this function using AND, OR and NOT gates. (Note
there are no constraints on the number of gate
inputs.)

CPS 104 11© Alvin R. Lebeck

Design Example

• Consider machine with 4 registers
• Given 2-bit input (register specifier, I1, I0)
• Want one of 4 output bits (O3-O0) to be 1

E.g., allows a single register to be accessed

• What is the circuit for this?

CPS 104 12© Alvin R. Lebeck

Circuit Example: Decoder

I0I1

Q0

Q1

Q2

Q3

I1 I0 Q0 Q1 Q2 Q3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

CPS 104 13© Alvin R. Lebeck

0

1

s

a
b

y

Y = (A * S) + (B * ~S)

B

A

S

Gate 3

Gate 2

Gate 1

Circuit Example: 2x1 MUX

MUX(A, B, S) = (A * S) + (B * ~S)

Multiplexor (MUX) selects from one of many inputs

CPS 104 14© Alvin R. Lebeck

Example 4x1 MUX

0

1

s0

a
b

y
0

1

0

1c
d

s1

0

1

2

3a

b

c

d

y

S

2

CPS 104 15© Alvin R. Lebeck

Arithmetic and Logical Operations in ISA

• What operations are there?
• How do we implement them?

Consider a 1-bit Adder

CPS 104 16© Alvin R. Lebeck

Truth Table for 1-bit Addition

a b Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

What is the circuit for Sum and for Cout?

01101100
01101101

+00101100
10011001

CPS 104 17© Alvin R. Lebeck

A 1-bit Full Adder

a b Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

01101100
01101101

+00101100
10011001

a

b

Cin

Cout

Sum

CPS 104 18© Alvin R. Lebeck

b0b1b2b3 a0a1a2a3

Cout

S0S1S2S3

Full AdderFull AdderFull AdderFull Adder

Example: 4-bit adder

Cin

0

CPS 104 19© Alvin R. Lebeck

Adder

Cin

Cout

F

2
0

1

2

3
a

b
Q

F Q
0 a + b
1 NOT b
2 a OR b
3 a AND b

ALU Slice (Almost)

CPS 104 20© Alvin R. Lebeck

Subtraction

• How do we perform integer subtraction?
• What is the HW?

CPS 104 21© Alvin R. Lebeck

ALU Slice

Binv F Q
0 0 a + b
1 0 a - b
- 1 NOT b
- 2 a OR b
- 3 a AND b

Adder

Cin

Cout

F

2
0

1

2

3
a

b
Q

0
1

Binvert
Sub

CPS 104 22© Alvin R. Lebeck

Example: Adder/Subtracter

Add/Sub = 0 => Addition
Add/Sub = 1 => Subtraction

Full AdderFull AdderFull AdderFull Adder

b0b1b2b3 a0a1a2a3

Cout

S0S1S2S3

Add/Sub

Cin

CPS 104 23© Alvin R. Lebeck

Overflow
Example1:
0100000
01101012 (= 5310)

+01010102 (= 4210)
10111112 (=-3310)

Example2:
1000000
10101012 (=-4310)

+10010102 (=-5410)
00111112 (= 3110)

Example3:
1100000
01101012 (= 5310)

+11010102 (=-2210)
00111112 (= 3110)

Example4:
0000000
00101012 (= 2110)

+01010102 (= 4210)
01111112 (= 6310)

CPS 104 24© Alvin R. Lebeck

Add/Subtract With Overflow detection

Full AdderFull AdderFull AdderFull Adder

S0S1Sn- 2Sn- 1

b0b1 a0a1bn- 2an- 2bn- 1an- 1

Add/Sub

OVERFLOW

CPS 104 25© Alvin R. Lebeck

Add/sub

Cin

Cout

Add/sub F

2
0

1

2

3
a

b
Q

A F Q
0 0 a + b
1 0 a - b
- 1 NOT b
- 2 a OR b
- 3 a AND b

The new ALU Slice

CPS 104 26© Alvin R. Lebeck

The ALU

ALU SliceALU SliceALU SliceALU Slice
ALU control

a0 b0a1 b1an-2 bn-2an-1 bn-1

Q0Q1Qn-2Qn-1

Overflow = Zero

CPS 104 27© Alvin R. Lebeck

Abstraction: The ALU

• General structure
• Two operand inputs
• Control inputs

Input A

Input B

ALU Operation

Carry Out

Result
Overflow

Zero
ALU

CPS 104 28© Alvin R. Lebeck

The Shift Operation

• Consider an 8-bit machine
• How do I implement the shift operation?

CPS 104 29© Alvin R. Lebeck

Shifter

010101010101

010101010101

010101010101

01 01

01 01

01 01

a0a1a2a3a4a5a6a7

Q0Q1Q2Q3Q4Q5Q6Q7

Shift-1

Shift-2

Shift-4

1

0

1

CPS 104 30© Alvin R. Lebeck

Summary thus far

• Given Boolean function, generate a circuit that
“realizes” the function.

• Constructed circuits that can add and subtract.
• The ALU: a circuit that can add, subtract, detect

overflow, compare, and do bit-wise operations (AND,
OR, NOT)

• Shifter
Next up: Storage Elements: Registers, Latches, Buses

