Outline for today

» Objective:
— Background on deadlock

— Pulse
» Speculative execution
* Virtual Machines and Xen

o Administrative:
— Make teams for programming projects

Background on Deadlock

Dealing with Deadlock

It can be prevented by breaking one of the
prerequisite conditions (review):
— Mutually exclusive use of resources

» Example: Allowing shared access to read-only files
(readers/writers problem from readers point of view)

— circular waiting

» Example: Define an ordering on resources and acquire
them in order (lower numbered fork first)

— hold and wait
— no pre-emption

Dealing with Deadlock (cont.)

Let it happen, then detect it and recover

— via externally-imposed preemption of
resources

Avoid dynamically by monitoring
resource requests and denying some.
— Banker’s Algorithm ...

Deadlock Theory

State of resource allocation Rrocess
captured in Alloc Arc Request
Resource Graph //‘ Arc
— Bipartite graph model with a
set P of vertices representin
processes and a Eet R for ° ... L
resources.
— Directed edges Resource \ Resource
* R, —>P; means R; alloc to P, R, R,

+ P;—>R;means P, requests R;
— Resource vertices contain
units of the resource Process Pl

Reusable Resour ces

Deadlock Theory

State transitions by
operations: Alloc Arc Request
— Granting a request / Arc

Process PR,

— Making a new request if all
outstanding requests satisfied [) Y o0
Deadlock defined on [)
g raph .)) Resource \ Resource
— P, is blocked in state S if R R
there is no operation P;can 0 1

perform

— P, is deadlocked if it is
blocked in all reachable states
from S

— Sis safe if no reachable state
is a deadlock state (i.e.,

havina camao daadlackad

Process P;

Deadlock Theory

P

* Cycleingraphis a 0
necessary condition Alloc Arc Request
— no cycle —>no deadlock. //‘ Arc

* No deadlock iff graph is °
completely reducible R, ® o0

— Intuition: Analyze graph, hd
asking if deadlock is \, /
inevitable from this state
by simulating most P
1

favorable state

transitions. Q
P3

Deadlock Detection Algorithm

Let U be the set of processes that have
yet to be reduced. Initially U = P.
Consider only reusable resources.

while (there exist unblocked processes in U)
{ Remove unblocked P, from U,

Cancel P;'s outstanding requests;

Release P;'s allocated resources;

/* possibly unblocking other P, in U */}
if (U !=A) signal deadlock;

Deadlock Detection Example

el

°® °® °® °® e R

o oo

Deadlock Detection Example

//0 /Q

° Ry

- /\

Deadlock Detection Example

O RZ//C) P,

Y R,

R, x R, o
o oL o

Deadlock Detection Example

D"

R, g, R, ;

P3
~

Deadlock Detection Example

O RZ//C) P,

°® °® e R

Ry

BT DR

Deadlock Detection Example

/

@NQ

° Ry

Ry

o OO

Deadlock Detection Example

QRz

O

R,

Ry

e

oo

Deadlock Detection Example

QRZ

O

R,

Ry

e

oo

Deadlock Detection Example

o O

Deadlock Detection Example

o O

Completely Reducible

Another Example

I:)0
Alloc Arc Request
/' Arc

rR,| ®® oo

5

With and without P, sz

Another Example

I:)O
Alloc Arc Request
//‘ Arc

R,| ®©® oo

.\/

P, Is there an unblocked
process to start with?

With and without P,

Another Example

I:)0
Alloc Arc Request
//" Arc
|
(]
[)

®
oo

~ A
M/

Ry

Py

With and without P,

Another Example

PO
Alloc Arc Request

Arc
o
RO ..\\ .’ ® Rl
Pl

With and without P,

Another Example

I:)0
Alloc Arc Request

Arc

rR,| ®® oo

(O

With and without P,

Another Example

®— Ry

I:)0
Alloc Arc Request
//‘ Arc
Is there an unblocked

{ |
oo
VT
process to start with?

R, | ®®
3 /
With and without P, sz

Consumable Resources

Ra
Not a fixed number of P, Q—» Producer
units, operations of Arc
producing and P,
consuming (e.g. Prock'r‘;er
messages)
Ordering matters on Q
applying reductions P,
— Reducing by producer \ °
makes “enough” units,
W
Rl
Consumable Resources
Ra
Not a fixed number of P, Q—» Producer
units, operations of Arc
roducing and consumin
¥ : J Producer Py

(e.g. messages)

Ordering matters on Arc

applying reductions
— Reducing by producer P

makes “enough” units, w 2 \'
— Start with P, ®

Consumable Resources

Ry
» Not a fixed number of P, Q—» Producer
units, operations of Arc
producing and consuming P
(e.g. messages) Producer 1
+ Ordering matters on Arc
applying reductions
— Reducing by producer P
makes “enough” units, 2
— Start with P,
Not reducible Ry
Consumable Resources
Ra
« Not a fixed number of P, Q—» Producer
units, operations of Arc
producing and consuming P
(e.g. messages) Producer 1
Arc

Ordering matters on

applying reductions
— Reducing by producer P

makes “enough” units, w 2 \’
— Start with P, [)

=< R,

Consumable Resources

Ry
» Not a fixed number of P, Q—» Producer
units, operations of Arc
producing and consuming P
(e.g. messages) Producer 1
« Ordering matters on Arc
applying reductions
— Reducing by producer P2
makes “enough” units, w
— Start with P, \\» °®
e
Rl
Consumable Resources
Ra
* Not a fixed number of Py Q‘P 0 Producer
units, operations of Arc
producing and consuming P
(e.g. messages) Producer 1
« Ordering matters on Arc

applying reductions
— Reducing by producer P

makes “enough” units, w 2 \’
— Start with P,

Consumable Resources
R,

Not a fixed number of P, Q W Producer
units, operations of Arc
producing and consuming P
(e.g. messages) Producer 1
Ordering matters on Arc
applying reductions
— Reducing by producer P

makes “enough” units, 2
— Start with P, \» W

Rl

Consumable Resources

Ra

Not a fixed number of P, Q Producer
units, operations of Arc
producing and consuming P
(e.g. messages) Producer 1
Ordering matters on Arc
applying reductions
— Reducing by producer P

makes “enough” units, w 2
— Start with P,

Reducible Ry

Deadlock Detection & Recovery

» Continuous monitoring and running this
algorithm are expensive.

 What to do when a deadlock is detected?

— Abort deadlocked processes (will result in
restarts).

— Preempt resources from selected processes,
rolling back the victims to a previous state
(undoing effects of work that has been done)

— Watch out for starvation.

Pulse

Goal

* To increase the kinds of deadlocks that
can be detected dynamically

» Uses high-level speculative execution to
go forward to discover dependencies

Overview of Pulse

* Kernel daemon
process

Presence of long-
sleeping processes

4 o trigger detection
o long sleeping .
process found Detection mode
, — Identify processes and

events awaited

— Fork speculative
processes to see what
events they generate
in the future

ietiection
fimished

o slecping
proceas foumd

Creating General Resource
Graph with Consumable
Resources

Process Py Event: B 15 frec

request edge

roducer edge
producer edie U cer ey

reguest edpe

Event: A 15 free Process Py

Details of Graph Construction

* Process and Event nodes

— Those processes blocked a long time.

— Events — all blocking system calls modified to
record the events for which caller waits
(resource, condition <op, val>)

» Edges
— Request edges generated with event nodes.

— Producer edges result from speculation

« Recorded in event buffer until speculative processes
terminate (normally, full buffer, timeout)

« Modifying all system calls that unblock the blocking ones
» Cycle detection on finished graph

Safe Speculation

* Must not modify state of any other process
— Fork with copy-on-write enabled
— Can not change shared kernel data structures
— Can not write to files
— Can not send signals to another process

* Pretend properly that we get unblocked
ourselves

— Not really reading input data if that's what we were
waiting for (so data dependent branches won'’t be
“right”)

— Must pretend that conditions true (in case of while
loop in application code)

Tricks of Forking Blocked
Processes

New process is
o B et forced to run
om ret_from_spec_fork
e e Fake the awaited
| S event
cn syscall_exit with
success

S fETu ke e prsoens, B, 1 O
ricd. Proccss 1 now contoa-

wetiches Pulwp hoaclk m

Pl rianes igain. All i The sane
as belire, cuocpl thal o speculs-
L b iree prrcees has boon coeaied

whilail]

5 Dining
Philosophers o

bl b = 1] %% 5 ke g bk
s |
LLLUS L] Y i ff berk

emkackilakii ¢ 17% &k & Eeagh ik

Figurs & Tha oode of philosopher i

e - .-d-_ -
A FAIB HazT e BTy
ekl ™| pasceptara [1, ekl |
b =il

[TR e
e am—
El i
—— _.-.—-.\.
st [1 | 0 v | mmtatedt
| ol P phsbescphun | pammprz [, haci |
[sl [=
L LN
o
¥ e AT

=)

Smoker’'s Problem

Suppose agent rel eases tobacco and matches

anwirker | smsaker I amuker PIO 1920
wihile (11 whike (1] [while i1y} {mgend
Piiohacook Mpaperd o block Mmeriches)
Pipaper) ¥ block Pmabzhesh PMicbaccn) ' block __,-" I i -
Wionder] Wiordar) Wionderk T " .
i i .) h..'q..,:qr\...;{.!“'\. -'Ir\..lll-l;i;:dq_ Y I-u:m..l.lﬂl.:m'.
L ! 1) F ! 1
agent e, £ S Wik} £ o
wihlz 1) | T - - 1.
Pordar /) hilock & T
Wione of pobwscon, papser, order ol random) PICE D410 P 1946351 La iR E U
WiomiE of the thee ol roradom Bl ot mhosse) [armmiker] | Carrskerd) (aarmkerdp

Apache Bug
PID 31042
(TG seript)
P10 31403546
(hatpd b

Limitations

» False positives

— Since everything appears as consumable
resources, Pulse could find more than one
producer edge (and extra cycles)

— Since more than single unit resources — a
cycle is really just necessary not sufficient

» False negatives
— Self-breaking mechanisms
— Events that never occur (no unlocks)

Extensions

» Spinning synchronization — we just need
to identify spinning as form of blocking
by the system — instrument calls

* Kernel deadlocks — use virtual machine
to speculatively execute a kernel
instance.

Intro to Virtual Machines

Traditional Multiprogrammed OS

Application(s)

ABI

Syscalls
oS

L

HW

Multiple applications
running with the
abstraction of dedicated
machine provided by
oS

Pass through of non-
privileged instructions
ISA — instruction set
architecture

ABI — application binary
interface

Waciniosh apps

PowarFC

Wacl: |

Windows apps

m\/\.

il

LinUE &oEE

adE

Macinbesh apps

L]

©James Smith, U.Wisc

]|

Virtualization Layer

Appkcasons
{31
W 1
e Wirlua
T ErEErE e Macking
Hprdmpra
Wpc=in

©James Smith, U.Wisc

Virtual Machines

» History: invented by IBM in
1960’s

» Fully protected and isolated
copy of the physical
machine providing the
abstraction of a dedicated
machine

e Layer: Virtual Machine
Monitor (VMM)

* Replicating machine for
multiple OSs

» Security Isolation

©James Smith, U.Wisc

Virtual Machine Monitor

Applications Applications _I

Operating System Operating Syste r"l—|

i Virtual Machine ‘u’irtllal Machine B
Virtual Machine Monitor |

Physical Machine

©J. Sugarman, USENIX01

Issues

« Hardware must be fully virtualizable —
all sensitive (privileged) instructions
must trap to VMM

— X86 is not fully virtualizable

* |n traditional model, all devices need
drivers in VMM
— PCs have lots of possible devices —

leverage the host OS for its drivers =>
hosted model

Xen

Paravirtualization

* A virtual machine that is not identical to
real hardware

» Does not require changes to application

interface (support unmodified user
code).

» Does require source modifications to
kernel — XenoLinux.

Structure

Privilege
ring 3

Privilege
ring 1

Privilege
ring 0

Structure

hypercalls | s || | 2maee, | | 2o, | | Sevee, ;

l E events

