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Outline for Today
• Objectives: 

– To review
• the process and thread abstractions.
• the mechanisms for implementing processes 

(threads), including scheduling
– To detail

• the Linux design decisions.

• Announcements
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OS Abstractions
Abstract machine environment. The OS defines a 

set of logical resources (objects) and operations 
on those objects (an interface for the use of those 
objects).

Hides the physical hardware.
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(Traditional) Unix Abstractions
• Processes - thread of control with context

• Files - everything else
– Regular file – named, linear stream of data bytes
– Sockets - endpoints of communication, possible 

between unrelated processes
– Pipes - unidirectional I/O stream, can be unnamed
– Devices
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Process Abstraction
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The Basics of Processes

• Processes are the OS-provided 
abstraction of multiple tasks (including 
user programs) executing concurrently.

• One instance of a program (which is only 
a passive set of bits) executing
(implying an execution context –
register state, memory resources, etc.)

• OS schedules processes to share CPU.
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Why Use Processes?
• To capture naturally concurrent activities 

within the structure of the programmed 
system.

• To gain speedup by overlapping activities 
or exploiting parallel hardware.
– From DMA to multiprocessors
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Separation of 
Policy and Mechanism

• “Why and What” vs. “How”
• Objectives and strategies vs. data 

structures, hardware and software 
implementation issues.

• Process abstraction vs. Process machinery
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Process Abstraction
• Unit of scheduling
• One (or more*) sequential threads of control 

– program counter, register values, call stack
• Unit of resource allocation 

– address space (code and data), open files
– sometimes called tasks or jobs

• Operations on processes: fork (clone-style 
creation), wait (parent on child), 
exit (self-termination), signal, kill.

Process-related System Calls in Unix.
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Threads and Processes
• Decouple the resource allocation aspect from the 

control aspect
• Thread abstraction - defines a single sequential 

instruction stream (PC, stack, register values)
• Task or process - the resource context serving as 

a “container” for one or more threads (shared 
address space)

• Kernel-supported threads - unit of scheduling 
(kernel-supported thread operations −> generally slow)
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An Example

Address Space

Thread Thread

Editing thread:
Responding to
your typing in 
your doc

Autosave thread: 
periodically
writes your doc
file to disk

doc

Doc formatting process
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User Level Thread Packages
• To avoid the performance penalty of kernel-

supported threads, implement at user level and 
manage by a run-time system 
– Contained “within” a single kernel entity (process)
– Invisible to OS (OS schedules their container, not 

being aware of the threads themselves or their states). 
Poor scheduling decisions possible.

• User-level thread operations can be 100x faster 
than kernel thread operations, but need better 
integration / cooperation with OS.
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Linux Processes
• Processes and threads are not differentiated –

with varying degrees of shared resources
• clone() system call takes flags to determine what 

resources parent and child processes will share:
– Open files
– Signal handlers
– Address space
– Same parent
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Process-related System Calls
• Simple and powerful primitives for process 

creation and initialization.
– Unix fork creates a child process as (initially) a clone of 

the parent 
[Linux: fork() implemented by clone() system call]

– parent program runs in child process – maybe just to set 
it up for exec

– child can exit, parent can wait for child to do so.
[Linux: wait4 system call]
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Unix Process Relationships

int pid;
int status = 0;

if (pid = fork()) {
/* parent */
…..
pid = wait(&status);

} else {
/* child */
…..
exit(status);

}

Parent uses wait to sleep 
until the child exits; wait 
returns child pid and 
status.

Wait variants allow wait 
on a specific child, or 
notification of stops and 
other signals.

Child process passes 
status back to parent on 
exit, to report 
success/failure.

The fork syscall returns a 
zero to the child and the 
child process ID to the 
parent.

Fork creates an exact 
copy of the parent 
process.
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Child Discipline

• After a fork, the parent program has complete 
control over the behavior of its child.

• The child inherits its execution environment 
from the parent...but the parent program can 
change it.

• Parent program may cause the child to 
execute a different program, by calling exec* 
in the child context.
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Exec, Execve, etc.
• Children should have lives of their own.
• Exec* “boots” the child with a different executable 

image.
– parent program makes exec* syscall (in forked child 

context) to run a program in a new child process
– exec* overlays child process with a new executable 

image
– restarts in user mode at predetermined entry point 

(e.g., crt0)
– no return to parent program (it’s gone)
– arguments and environment variables passed in 

memory
– file descriptors etc. are unchanged
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“Join” Scenarios
• Several cases must be considered for join 

(e.g., exit/wait).
– What if the child exits before the parent joins?

• “Zombie” process object holds child status and stats.
– What if the parent continues to run but never 

joins?
• How not to fill up memory with zombie processes?

– What if the parent exits before the child?
• Orphans become children of init (process 1).

– What if the parent can’t afford to get “stuck” on a 
join?

• Unix makes provisions for asynchronous notification.
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Process Mechanisms
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Context Switching
• When a process is running, its program 

counter, register values, stack pointer, etc. 
are contained in the hardware registers of the 
CPU. The process has direct control of the 
CPU hardware for now.

• When a process is not the one currently 
running, its current register values are saved 
in a process descriptor data structure 
(task_struct)

• Context switching involves moving state 
between CPU and various processes’ 
descriptors by the OS.
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Linux task_struct
• Process descriptor in 

kernel memory 
represents a process 
(allocated on process 
creation, deallocated
on termination).
– Linux: task_struct, 

located via task pointer 
in thread_info structure 
on process’s kernel 
state.

state
prio
policy
*parent
tasks
pid
…

task_struct

task_struct
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Linux task_struct

state
prio
policy
*parent
tasks
pid
…

process stack

thread_info
*task

task_struct

task_struct
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Process State Transitions

Ready

Create
Process

Running

Blocked

Wakeup
(due to event)

sleep (due to
outstanding request

of syscall)

scheduled

suspended
while another
process scheduled

Done
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Linux Process States

TASK_RUNNING

Ready

fork( )

TASK_INTERRUPTABLE
TASK_UNINTERRUPTABLE

Blocked

Wakeup
(due to event)

sleep (due to
outstanding request

of syscall)

scheduled

suspended
while another
process scheduled

TASK_RUNNING

Running

TASK_ZOMBIE

Done
exit( )
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Scheduling
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Interleaved Schedules

Uni-processor 
implementation

logical concept /
multiprocessor
implementation

context 
switch
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Scheduling: Policy and 
Mechanism

• Scheduling policy answers the question:
Which process/thread, among all those ready to run, 
should be given the chance to run next? In what order do 
the processes/threads get to run?  For how long?

• Mechanisms are the tools for supporting the 
process/thread abstractions and affect how the 
scheduling policy can be implemented. 
– How the process or thread is represented to the system -

process descriptor.
– What happens on a context switch.
– When do we get the chance to make these scheduling 

decisions (timer interrupts, thread operations that yield or 
block, user program system calls)
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Flavors
• Long-term scheduling - which jobs get 

resources (e.g. get allocated memory) and the 
chance to compete for cycles (to be on the ready 
queue).

• Short-term scheduling or process scheduling
- which of those gets the next slice of CPU time

• Non-preemptive - the running process/thread 
has to explicitly give up control

• Preemptive - interrupts cause scheduling 
opportunities to reevaluate who should be 
running now (is there a more “valuable” ready 
task?)
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Preemption
• Scheduling policies may be preemptive or non-

preemptive.
• Preemptive: scheduler may unilaterally force a task to 

relinquish  the processor before the task blocks, yields, or 
completes.

– timeslicing prevents jobs from monopolizing the CPU
• Scheduler chooses a job and runs it for a quantum of CPU 

time.
• A job executing longer than its quantum is forced to yield by 

scheduler code running from the clock interrupt handler.
– use preemption to honor priorities

• Preempt a job if a higher priority job enters the ready state.
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Priority
• Some goals can be met by incorporating a notion of priority

into a “base” scheduling discipline.
• Each job in the ready pool has an associated  priority value; the 

scheduler favors jobs with higher priority values.

• External priority values:
– imposed on the system from outside
– reflect external preferences for particular users or tasks

• “All jobs are equal, but some jobs are more equal than others.”
– Example: Unix nice system call to lower priority of a task.
– Example: Urgent tasks in a real-time process control system.

• Internal priorities
– scheduler dynamically calculates and uses for queuing 

discipline. System adjusts priority values internally as as an 
implementation technique within the scheduler.
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Internal Priority
• Drop priority of tasks consuming more than their share 
• Boost tasks that already hold resources that are in 

demand
• Boost tasks that have starved in the recent past
• Adaptive to observed behavior: typically a continuous, 

dynamic, readjustment in response to observed 
conditions and events
– May be visible and controllable to other parts of the system
– Priority reassigned if I/O bound (large unused portion of quantum) 

or if CPU bound (nothing left)
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Keeping Your Priorities Straight
• Priorities must be handled carefully when there 

are dependencies among tasks with different 
priorities.
– A task with priority P should never impede the progress 

of a task with priority Q > P.
• This is called priority inversion, and it is to be avoided.

– The basic solution is some form of priority inheritance.
• When a task with priority Q waits on some resource, the holder 

(with priority P) temporarily inherits priority Q if Q > P.
• Inheritance may also be needed when tasks coordinate with 

IPC.
– Inheritance is useful to meet deadlines and preserve 

low-jitter execution, as well as to honor priorities.
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Pitfalls: 
Mars Pathfinder Example

• In July 1997, Pathfinder’s computer reset itself several 
times during data collection and transmission from Mars. 
– One of its processes failed to complete by a deadline, triggering the 

reset.

• Priority Inversion Problem. 
– A low priority process held a mutual exclusion semaphore on a 

shared data structure, but was preempted to let higher priority 
processes run.

– The higher priority process which failed to complete in time was
blocked on this semaphore. 

– Meanwhile a bunch of medium priority processes ran, until finally 
the deadline ran out. The low priority semaphore-holding process 
never got the chance to run again in that time to get to the point of 
releasing the semaphore

– Priority inheritance had not been enabled on semaphore.
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CPU Scheduling Policy
• The CPU scheduler makes a sequence of 

“moves” that determines the interleaving of 
threads.
Programs use synchronization to prevent “bad moves”.
…but otherwise scheduling choices appear (to the 

program) to be nondeterministic.

Scheduler’s
ready pool

Wakeup or
ReadyToRun schedule()

CONTEXT SWITCH
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Scheduler Policy Goals & 
Metrics of Success

– Response time or latency (to minimize the average time 
between arrival to completion of requests)

• How long does it take to do what I asked? (R) Arrival −> done.
– Throughput (to maximize productivity)

• How many operations complete per unit of time? (X)
– Utilization (to maximize use of some device) 

• What percentage of time does the CPU (and each device) spend 
doing useful work? (U) 
time-in-use / elapsed time

– Fairness
• What does this mean?  Divide the pie evenly?  Guarantee low 

variance in response times?  Freedom from starvation?
• Proportional sharing of resources

– Meet deadlines and guarantee jitter-free periodic tasks
• real time systems (e.g. process control, continuous media)
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Multiprogramming and 
Utilization

• Early motivation: Overlap of computation and I/O
• Determine mix and multiprogramming level with the goal 

of “covering” the idle times caused by waiting on I/O.

Time −>

CPU I/O Gantt Chart

Context switch overheads
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Classic Scheduling Algorithms
• SJF - Shortest Job First (provably optimal in 

minimizing average response time, assuming we 
know service times in advance)

• FIFO, FCFS
• Round Robin
• Multilevel Feedback Queuing
• Priority Scheduling (using priority queue data 

structure)
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Multilevel Feedback Queue
• Many systems (e.g., Unix variants) use a 

multilevel feedback queue.
– multilevel. Separate queue for each of N priority levels.
– feedback.  Factor previous behavior into new job 

priority.

high

low

I/O bound jobs waiting for CPU

CPU-bound jobs

jobs holding resouces
jobs with high external priority

ready queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue.

constant time, no sorting

Priority of CPU-bound
jobs decays with system
load and service received. 
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Real Time Schedulers
• Real-time schedulers must support regular, 

periodic execution of tasks (e.g., continuous 
media).
– CPU Reservations

• “I need to execute for X out of every Y units.”
• Scheduler exercises admission control at reservation 

time: application must handle failure of a reservation 
request.

– Proportional Share
• “I need 1/n of resources”

– Time Constraints
• “Run this before my deadline at time T.”
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Assumptions
• Tasks are periodic with constant interval 

between requests, Ti (request rate 1/Ti)
• Each task must be completed before the 

next request for it occurs
• Tasks are independent
• Run-time for each task is constant (max),

Ci

• Any non-periodic tasks are special

44

Task Model

time

✦1

✦2

Ti Ti

T2

C1 = 1

C2 = 1
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Definitions
• Deadline is time of next request
• Overflow at time t if t is deadline of unfulfilled 

request
• Feasible schedule - for a given set of tasks, a 

scheduling algorithm produces a schedule so no 
overflow ever occurs.

• Critical instant for a task - time at which a request 
will have largest response time.
– Occurs when task is requested simultaneously with all 

tasks of higher priority
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Rate Monotonic

• Assign priorities to tasks according to their 
request rates, independent of run times

• Optimal in the sense that no other fixed 
priority assignment rule can schedule a task 
set which can not be scheduled by rate 
monotonic.

• If feasible (fixed) priority assignment exists for 
some task set, rate monotonic is feasible for 
that task set.
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Earliest Deadline First
• Dynamic algorithm
• Priorities are assigned to tasks according to the 

deadlines of their current request
• With EDF there is no idle time prior to an 

overflow
• For a given set of m tasks, EDF is feasible iff

C1/T1 + C2/T2 + … + Cm/Tm [ 1
• If a set of tasks can be scheduled by any 

algorithm, it can be scheduled by EDF
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Linux Scheduling Policy
• Runnable process with highest priority and 

timeslice remaining runs (SCHED_OTHER 
policy)
– Dynamically calculated priority

• Starts with nice value
• Bonus or penalty reflecting whether I/O or compute 

bound by tracking sleep time vs. runnable time: 
sleep_avg and decremented by timer tick while 
running
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Linux Scheduling Policy
– Dynamically calculated timeslice

• The higher the dynamic priority, the longer the timeslice:

– Recalculated every round when “expired” and “active” 
swap

– Exceptions for expired interactive 
• Go back on active unless there are starving expired tasks

Low priority
less interactive

High priority
more interactive

10ms 150ms 300ms
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Runqueue for O(1) Scheduler

active

expired

priority array

priority array

.

.

.

.

.

.

priority queue

priority queue

priority queue

priority queue

Higher priority
more I/O
300ms

lower priority
more CPU
10ms
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Linux Real-time
• No guarantees
• SCHED_FIFO

– Static priority, effectively higher than 
SCHED_OTHER processes*

– No timeslice – it runs until it blocks or yields 
voluntarily

– RR within same priority level
• SCHED_RR

– As above but with a timeslice.

* Although their priority number ranges overlap
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Support for SMP
• Every processor has its 

own private runqueue
• Locking – spinlock 

protects runqueue
• Load balancing – pulls 

tasks from busiest 
runqueue into mine.

• Affinity – cpus_allowed 
bitmask constrains a 
process to particular set of 
processors

• load_balance runs from 
schedule( ) when runqueue is 
empty or periodically esp. during 
idle.

• Prefers to pull processes from 
expired, not cache-hot, high 
priority, allowed by affinity

P P P P

Memory

$ $ $ $

Symmetric mp
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Synchronization
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The Trouble with Concurrency 
in Threads...

Thread0 Thread1

Data: x

while(i<10)
{x=x+1;

i++;}

0

while(j<10)
{x=x+1;

j++;}

0 0i j

What is the value of x when both threads
leave this while loop?
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Range of Answers
Process 0
LD x         // x currently 0

Add 1
ST x         // x now 1, stored over 9

Do 9 more full loops // leaving x at 10

Process1

LD x            // x currently 0
Add 1
ST x            // x now 1
Do 8 more full loops   // x = 9

LD x            // x now 1

Add 1
ST x           // x = 2 stored over 10
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Nondeterminism
• What unit of work can be 

performed without 
interruption? Indivisible or 
atomic operations.

• Interleavings - possible 
execution sequences of 
operations drawn from all 
threads.

• Race condition - final 
results depend on ordering 
and may not be “correct”.

while (i<10) {x=x+1; i++;}

load value of x into reg
yield( )
add 1 to reg
yield ( )
store reg value at x
yield ( )
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Reasoning about Interleavings
• On a uniprocessor, the possible execution 

sequences depend on when context switches can 
occur
– Voluntary context switch - the process or thread 

explicitly yields the CPU (blocking on a system call it 
makes, invoking a Yield operation).

– Interrupts or exceptions occurring - an asynchronous 
handler activated that disrupts the execution flow.

– Preemptive scheduling - a timer interrupt may cause an 
involuntary context switch at any point in the code.

• On multiprocessors, the ordering of operations on 
shared memory locations is the important factor.
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Critical Sections
• If a sequence of non-atomic operations must be 

executed as if it were atomic in order to be correct, 
then we need to provide a way to constrain the 
possible interleavings in this critical section of our 
code. 
– Critical sections are code sequences that 

contribute to “bad” race conditions.
– Synchronization needed around such critical 

sections.
• Mutual Exclusion - goal is to ensure that critical 

sections execute atomically w.r.t. related critical 
sections in other threads or processes.
– How?
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The Critical Section Problem
Each process follows this template:

while (1)
{ ...other stuff...   //processes in here shouldn’t stop 

others
enter_region( );
critical section
exit_region( );

}
The problem is to define enter_region and 

exit_region to ensure mutual exclusion with some 
degree of fairness.
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Implementation Options for 
Mutual Exclusion

• Disable Interrupts
• Busywaiting solutions - spinlocks

– execute a tight loop if critical section is busy
– benefits from specialized atomic (read-mod-write) 

instructions

• Blocking synchronization
– sleep (enqueued on wait queue) while C.S. is busy

Synchronization primitives (abstractions, such as 
locks) which are provided by a system may be 
implemented with some combination of these 
techniques.


