CPS 214:

Computer Networks and Distributed Systems

Networked Environments: Grid and P2P systems

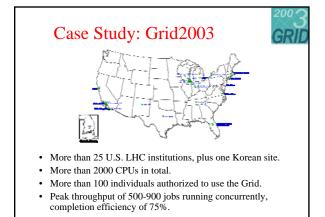
Anda Iamnitchi anda@cs.duke.edu

Class Objectives

- Start thinking of computer networking issue from the perspective of networked-applications
 - Because it's more intuitive
 - Because it's fun
- Understand some real applications in terms of:
 - Motivation, objectives
 - $\ Resource/network \ requirements$
 - Architecture ("distributed systems" part)

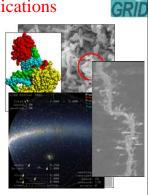
Grid and P2P Environments: Why

- · Classes of applications rather than applications
- · Principles rather than isolated solutions
- Popular (very, still) these days
- · Deployed, real systems
- Eat up significant network resources
- Generate a lot of hype (and we must recognize it)
- Other applications are described in textbook(s)
 - Such as email, ftp, web, etc.


Outline

- · Grid environments:
 - Characteristics
- Case study: Grid2003
- Volunteer computing - Characteristics
 - Case study: Seti@home
- Peer-to-Peer
 - Characteristics (and some definitions)
 - Impact
 - Killer app: file sharing
 - Case study: Gnutella

Grids: Characteristics

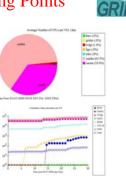

Users:

- Hundreds from 10s of institutions
- Homogeneous, often trusted (well-established) communities
- Implicit incentives for good behavior
- Resources:
- Computers, data, instruments, storage, applications
- Usually owned/administered by institutions
- Highly available
- Typical applications: data- and compute-intensive processing
- Objective: common infrastructure for basic services – Resource discovery, Data management, Job management, Authentication,
 - Monitoring, etc.

Grid2003 Applications

- 6 VOs, 11 Apps
- High-energy physics simulation and data analysis
- Cosmology based on analysis of astronomical survey data
- Molecular crystalography from analysis of X-ray diffraction data
- Genome analysis
- System "exercising" applications

Grid2003 Applications


- CMS proton-proton collision simulation
- · ATLAS proton-proton collision simulation

GRI

- · LIGO gravitational wave search
- · SDSS galaxy cluster detection
- · ATLAS interactive analysis
- · BTeV proton-antiproton collision simulation
- · SnB biomolecular analysis
- GADU/Gnare: genome analysis
- · Various computer science experiments
 - www.ivdgl.org/grid2003/applications

Grid2003 Interesting Points

- Each virtual organization includes its own set of system resources (compute nodes, storage, etc.) and people. VO membership info is managed system-wide, but policies are enforced at each site.
- Throughput is a key metric for success, and monitoring tools are used to measure it and generate reports for each VO.

Grid2003 Metrics		200 4 GRÌ	
Metric	Target	Achieved	
Number of CPUs	400	2762 (28 sites)	
Number of users	> 10	102 (16)	
Number of applications	> 4	10 (+CS)	
Number of sites running concurrent apps	> 10	17	
Peak number of concurrent jobs	1000	1100	

> 2-3 TB

4.4 TB max

Outline

- · Grid environments:
 - Characteristics
 - Case study: Grid2003
 - Volunteer computing - Characteristics
 - Case study: Seti@home
- · Peer-to-Peer
 - Characteristics (and some definitions)
 - Impact
 - Killer app: file sharing
 - Case study: Gnutella

Application: Number crunching

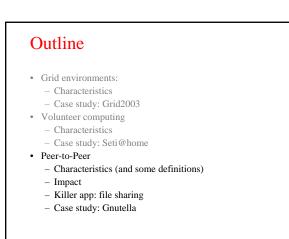
- Examples: Seti@Home, Entropia, UnitedDevices, DistributedScience, many others
- Incentives

Data transfer per day

- ET cool, physics/AIDS research/etc. less so
- Approach suitable for a particular class of problems.
- Some characteristics (for Seti@Home):
 - Massive parallelism
 - Low bandwidth/computation ratio
 - Fixed-rate data processing task
 - Error tolerance
- Users do donate *real* resources - Why?

extra consumed power

\$1.5M / year


SETI@home							
 SETI@home "is a scientific experiment that uses Internet-connected computers in the Search for Extraterrestrial Intelligence (SETI). You can participate by running a free program that downloads and analyzes radio telescope data. " Is it Grid? Or P2P? 							
Puts to work huge pool of underutilized resources							
		Total	Last 24 Hours (as of 01/13/2005 am)				
	Users	5,315,717	1,193				
	Results received	1,724 millions	1.45 millions				

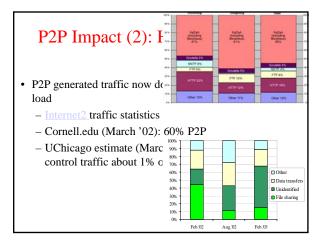
11 hr 07 min 08.4

sec

1055.442 years

6 hr 21 min 15.4 sec

P2P Definition(s)

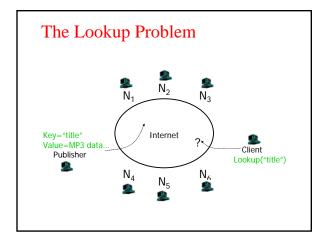

Average CPU time/work unit

Total CPU time 2.18 million years

- A number of definitions coexist:
- Def 1: "A class of applications that takes advantage of resources — storage, cycles, content, human presence available at the edges of the Internet."
 - Edges often turned off, without permanent IP addresses
- *Def 2:* "A class of decentralized, self-organizing distributed systems, in which all or most communication is symmetric."
- · Lots of other definitions that fit in between
- Lots of (P2P?) systems that fit nowhere...

P2P: Characteristics Users: Millions Anonymous individuals No implicit incentives for good behavior (free riding, cheating) Resources: Computing cycles XOR files Resources owned/administered (?) by user Intermittent (user/resource) participation: Gnutella: average lifetime 60 min. (*01) MojoNation: 1/6 users always connected (*01) Overnet: 50% nodes available 70% of time over a week (*02) Typical applications: file retrieval or parallel computations Vertically integrated solutions: Although signs of change: BOINC

P2P Impact: Widespread adoption • KaZaA – 170 millions downloads (3.5M/week) the most popular application ever! • Number of users for file-sharing applications (www.slyck.com) 01/03/2005, 19:00) 2,698,388 eDonkey FastTrack 2,065,657 Warez 1,402,729 Gnutella 1,115,086 OverNet 1,056,558 DirectConnect 273,485 MP2P 264,043


P2P Impact (3)

- Might force companies to change their business models
- Data copying and distribution carries almost zero cost now → this might impact copyright laws
- "New" research domain \rightarrow grants and PhD theses

P2P killer app: File sharing

- Too many to list them all:

 Napster, FastTrack (KaZaA, KazaaLite), Gnutella (LimeWire, Morpheus, BearShare), iMesh, eDonkey, MP2P, DirectConnect, Filetopia,
- · New names/favorites appearing all the time
- Other app:
 - Instant messaging (Yahoo, AOL)
- Collaborative environments (Groove)
- Backup storage (HiveNet, OceanStore)Spam filtering
- Span menng
 Anonymous email
- Censorship-resistant publishing systems (Ethernity, Freenet)
- Content distribution
- Network measurements

Common Primitives

- Join: how do I begin participating?
- **Publish**: how do I advertise my file?
- Search: how do I find a file?
- Fetch: how do I retrieve a file?

Outline

- Grid environments:
 - Characteristics
 - Case study: Grid2003
- Volunteer computing
 - Characteristics
 - Case study: Seti@home
- Peer-to-Peer
 - Characteristics (and some definitions)
 - Impact
 - Killer app: file sharing
 - Case study: Gnutella

P2P Case Study: Gnutella

Gnutella: History

- In 2000, J. Frankel and T. Pepper from Nullsoft released Gnutella
- Soon many other clients: Bearshare, Morpheus, LimeWire, etc.
- In 2001, many protocol enhancements including "ultrapeers"

Gnutella Network

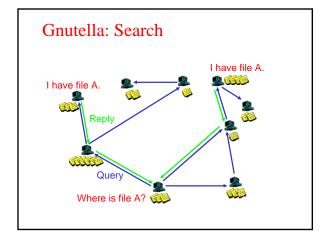
Why analyze Gnutella network?

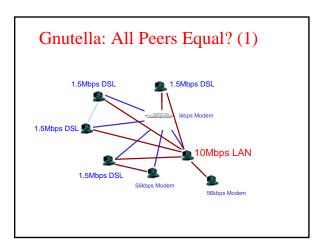
- Large scale
 - up to 500k nodes, 100TB data, 10M files today
- Self-organizing networkFast growth in its early stages
- more than 50 times during first half of 2001
- Open architecture, simple and flexible protocol
- Interesting mix of social and technical issues

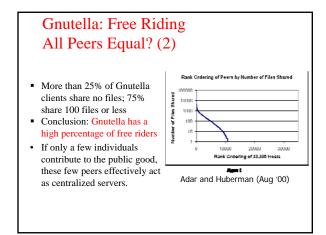
Gnutella protocol overview

P2P file sharing app. on top of an overlay network
 Nodes maintain open TCP connections

- Messages are broadcasted (flooded) or back-propagated

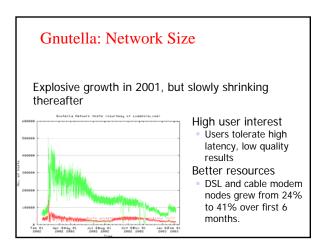

•	(Initi	al) protocol	Broadcast (Flooding)	Back-propagated	Node to node
		Membership	PING	PONG	
		Query	QUERY	QUERY HIT	
		File download			GET, PUSH

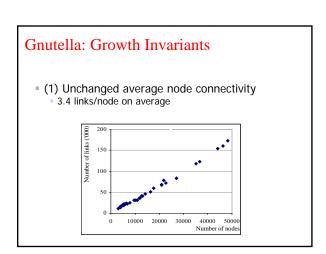

Protocol refinements (2001 and later)

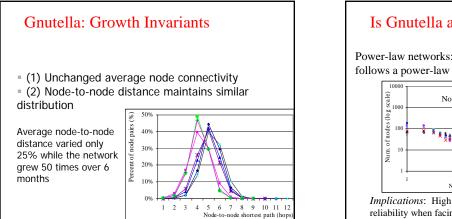

 Ping messages used more efficiently, Vendor specific extensions, GWebCaches, XML searches, super-nodes (2-layer hierarchy).

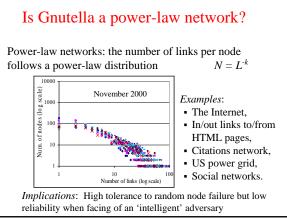
Gnutella: Overview

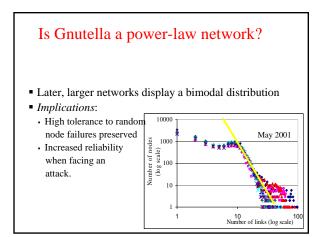
- Query Flooding:
 - **Join**: on startup, client contacts a few other nodes; these become its "neighbors"
 - Publish: no need
 - Search: ask neighbors, who is their neighbors, and so on... when/if found, reply to sender.
 - **Fetch**: get the file directly from peer

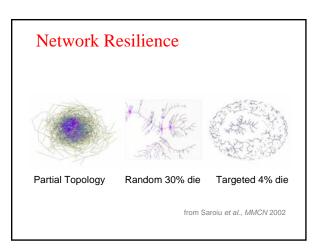

Gnutella: Discussion Pros: Fully de-centralized Search cost distributed Cons: Search scope is O(N) Search time is O(???) Nodes leave often, network unstable

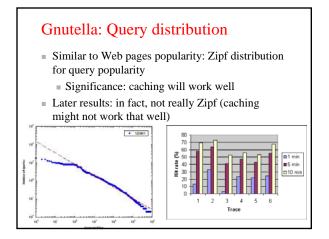

What would you ask about Gnutella?

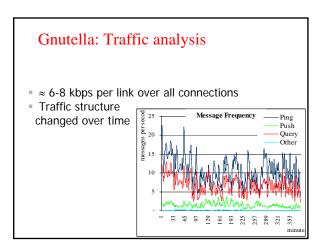

- Topology?
- Scale?
- Distribution of user requests?
- Node dynamics?
- Network traffic?
- ...

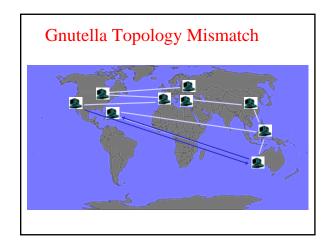

Gnutella: Tools for Network Exploration

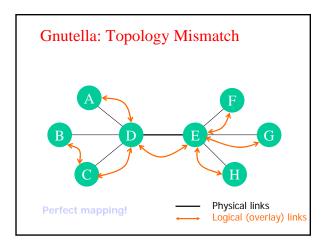

- *Eavesdropper* modified node inserted into the network to log traffic.
- Crawler connects to all active nodes and uses the membership protocol to discover graph topology.
 Client-server approach.

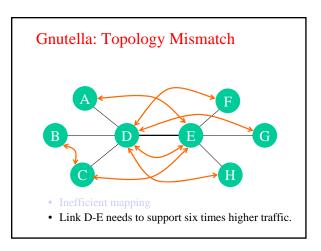


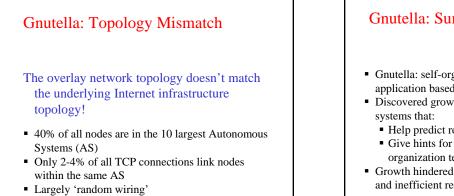









Gnutella:Total generated traffic


1Gbps (or 330TB/month)!

- Note that this estimate excludes actual file transfers
- Q: Does it matter?
- Compare to 15,000TB/month estimated in US Internet backbone (Dec. 2000)

Gnutella: Summary

- Gnutella: self-organizing, large-scale, P2P application based on overlay network. It works!
- Discovered growth invariants specific to large-scale
 - Help predict resource usage.
 - Give hints for better search and resource organization techniques.
- Growth hindered by the volume of generated traffic and inefficient resource use.

P2P: Summary

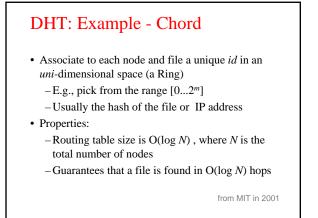
- Many different styles; pros and cons of each

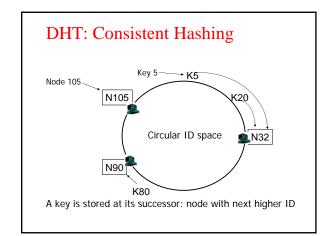
 centralized, flooding, swarming, unstructured and structured routing
- · Lessons learned:
 - Single points of failure are very bad
 - Flooding messages to everyone is bad
 - Underlying network topology is important
 - Not all nodes are equal
 - Need incentives to discourage freeloading
 - Privacy and security are important
 - Structure can provide theoretical bounds and guarantees

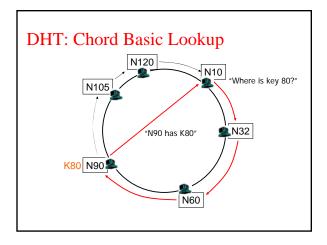
Discussions

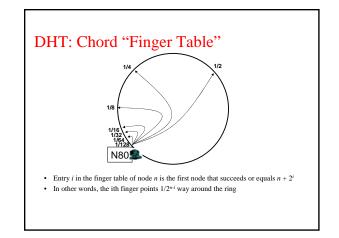
- Naturally emerging applications
 Some more than others (science is more planned than
- music swapping, theoretically)Posing new challenges to the underlying network
 - Grids: QoS, payments OK, account for failures, fast reliable transfers, bulk data transfer
 - P2P: huge traffic, new policies for ISP (universities)
 - Volunteer computing: not much
- · Examples of how applications shape the network protocols.

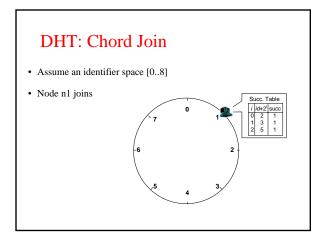
DHT: History

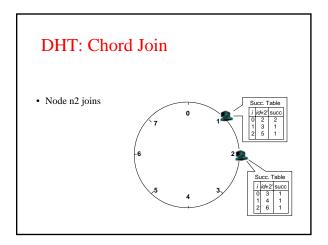

- In 2000-2001, academic researchers said "we want to play too!"
- Motivation:
 - Frustrated by popularity of all these "half-baked" P2P apps :)
 - We can do better! (so we said)
 - Guaranteed lookup success for files in system
 - Provable bounds on search time
 - Provable scalability to millions of node
- Hot Topic in networking ever since

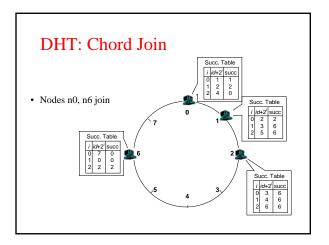

DHT: Overview

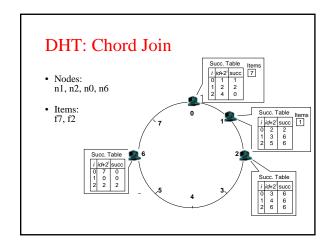

- Abstraction: a distributed "hash-table" (DHT) data structure: - put(id, item);
 - item = get(id);
- Implementation: nodes in system form a distributed data structure
 - Can be Ring, Tree, Hypercube, Skip List, Butterfly Network, ...

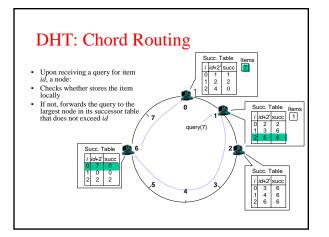

DHT: Overview (2)


- Structured Overlay Routing:
 - Join: On startup, contact a "bootstrap" node and integrate yourself into the distributed data structure; get a node id
 - Publish: Route publication for *file id* toward a close *node id* along the data structure
 - Search: Route a query for file id toward a close node id. Data structure guarantees that query will meet the publication.
 - Fetch: Two options:
 - Publication contains actual file => fetch from where query stops
 - Publication says "I have file X" => query tells you 128.2.1.3 has X, use IP routing to get X from 128.2.1.3









DHT: Chord Summary

- Routing table size? -Log N fingers
- Routing time?
 - -Each hop expects to 1/2 the distance to the desired id => expect O(log N) hops.

DHT: Discussion

- Pros:
 - Guaranteed Lookup
 - $O(\log N)$ per node state and search scope
- Cons:
 - No one uses them? (only one file sharing app)
 - Supporting non-exact match search is hard