
1

CPS 214:

Computer Networks and Distributed Systems

Networked Environments:
Grid and P2P systems

Anda Iamnitchi
anda@cs.duke.edu

Class Objectives

• Start thinking of computer networking issue from
the perspective of networked-applications
– Because it’s more intuitive
– Because it’s fun

• Understand some real applications in terms of:
– Motivation, objectives
– Resource/network requirements
– Architecture (“distributed systems” part)

Grid and P2P Environments: Why

• Classes of applications rather than applications
• Principles rather than isolated solutions
• Popular (very, still) these days
• Deployed, real systems
• Eat up significant network resources
• Generate a lot of hype (and we must recognize it)
• Other applications are described in textbook(s)

– Such as email, ftp, web, etc.

Outline

• Grid environments:
– Characteristics
– Case study: Grid2003

• Volunteer computing
– Characteristics
– Case study: Seti@home

• Peer-to-Peer
– Characteristics (and some definitions)
– Impact
– Killer app: file sharing
– Case study: Gnutella

Grids: Characteristics
• Users:

– Hundreds from 10s of institutions
– Homogeneous, often trusted (well-established) communities
– Implicit incentives for good behavior

• Resources:
– Computers, data, instruments, storage, applications
– Usually owned/administered by institutions
– Highly available

• Typical applications: data- and compute-intensive processing
• Objective: common infrastructure for basic services

– Resource discovery, Data management, Job management, Authentication,
Monitoring, etc.

Case Study: Grid2003

• More than 25 U.S. LHC institutions, plus one Korean site.
• More than 2000 CPUs in total.
• More than 100 individuals authorized to use the Grid.
• Peak throughput of 500-900 jobs running concurrently,

completion efficiency of 75%.

2

Grid2003 Applications

• 6 VOs, 11 Apps
• High-energy physics simulation

and data analysis
• Cosmology based on analysis of

astronomical survey data
• Molecular crystalography from

analysis of X-ray diffraction data
• Genome analysis
• System “exercising” applications

Grid2003 Applications

• CMS proton-proton collision simulation
• ATLAS proton-proton collision simulation
• LIGO gravitational wave search
• SDSS galaxy cluster detection
• ATLAS interactive analysis
• BTeV proton-antiproton collision simulation
• SnB biomolecular analysis
• GADU/Gnare: genome analysis
• Various computer science experiments

www.ivdgl.org/grid2003/applications

Grid2003 Interesting Points

• Each virtual organization
includes its own set of system
resources (compute nodes,
storage, etc.) and people. VO
membership info is managed
system-wide, but policies are
enforced at each site.

• Throughput is a key metric for
success, and monitoring tools
are used to measure it and
generate reports for each VO.

Grid2003 Metrics

2762 (28 sites)400Number of CPUs

AchievedTargetMetric

102 (16)> 10Number of users

> 2-3 TB

1000

> 10

> 4

4.4 TB maxData transfer per day

1100 Peak number of concurrent jobs

17Number of sites running concurrent apps

10 (+CS)Number of applications

Outline

• Grid environments:
– Characteristics
– Case study: Grid2003

• Volunteer computing
– Characteristics
– Case study: Seti@home

• Peer-to-Peer
– Characteristics (and some definitions)
– Impact
– Killer app: file sharing
– Case study: Gnutella

Application: Number crunching

• Examples: Seti@Home, Entropia, UnitedDevices,
DistributedScience, many others

• Incentives
– ET cool, physics/AIDS research/etc. less so

• Approach suitable for a particular class of problems.
• Some characteristics (for Seti@Home):

– Massive parallelism
– Low bandwidth/computation ratio
– Fixed-rate data processing task
– Error tolerance

• Users do donate *real* resources
– Why?

$1.5M / year

extra consumed power

3

SETI@home

• SETI@home “is a scientific experiment that uses Internet-connected computers
in the Search for Extraterrestrial Intelligence (SETI). You can participate by running a free

program that downloads and analyzes radio telescope data. “
• Is it Grid? Or P2P?
• Puts to work huge pool of underutilized resources

Total Last 24 Hours
(as of 01/13/2005 am)

Users 5,315,717 1,193

Results received 1,724 millions 1.45 millions

Total CPU time 2.18 million years 1055.442 years

Average CPU
time/work unit

11 hr 07 min 08.4
sec 6 hr 21 min 15.4 sec

Outline

• Grid environments:
– Characteristics
– Case study: Grid2003

• Volunteer computing
– Characteristics
– Case study: Seti@home

• Peer-to-Peer
– Characteristics (and some definitions)
– Impact
– Killer app: file sharing
– Case study: Gnutella

P2P Definition(s)

A number of definitions coexist:
• Def 1: “A class of applications that takes advantage of

resources — storage, cycles, content, human presence —
available at the edges of the Internet.”
– Edges often turned off, without permanent IP addresses

• Def 2: “A class of decentralized, self-organizing distributed
systems, in which all or most communication is symmetric.”

• Lots of other definitions that fit in between
• Lots of (P2P?) systems that fit nowhere…

P2P: Characteristics
• Users:

– Millions
– Anonymous individuals
– No implicit incentives for good behavior (free riding, cheating)

• Resources:
– Computing cycles XOR files
– Resources owned/administered (?) by user
– Intermittent (user/resource) participation:

• Gnutella: average lifetime 60 min. (‘01)
• MojoNation: 1/6 users always connected (‘01)
• Overnet: 50% nodes available 70% of time over a week (‘02)

• Typical applications: file retrieval or parallel computations
• Vertically integrated solutions:

– Although signs of change: BOINC

P2P Impact: Widespread adoption
• KaZaA – 170 millions downloads (3.5M/week)

the most popular application ever!
• Number of users for file-sharing applications

(www.slyck.com)
01/03/2005, 19:00)

264,043 MP2P
273,485 DirectConnect
1,056,558 OverNet
1,115,086 Gnutella
1,402,729 Warez
2,065,657 FastTrack
2,698,388 eDonkey

P2P Impact (2): Huge traffic

• P2P generated traffic now dominates the Internet
load
– Internet2 traffic statistics
– Cornell.edu (March ’02): 60% P2P
– UChicago estimate (March ‘01): Gnutella

control traffic about 1% of all Internet traffic.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Feb.'02 Aug.'02 Feb.'03

Other
Data transfers
Unidentified
File sharing

4

P2P Impact (3)

• Might force companies to change their business
models

• Data copying and distribution carries almost zero cost
now this might impact copyright laws

• “New” research domain grants and PhD theses

P2P killer app: File sharing

• Too many to list them all:
– Napster, FastTrack (KaZaA, KazaaLite), Gnutella (LimeWire,

Morpheus, BearShare), iMesh, eDonkey, MP2P, DirectConnect,
Filetopia,

• New names/favorites appearing all the time
• Other app:

– Instant messaging (Yahoo, AOL)
– Collaborative environments (Groove)
– Backup storage (HiveNet, OceanStore)
– Spam filtering
– Anonymous email
– Censorship-resistant publishing systems (Ethernity, Freenet)
– Content distribution
– Network measurements

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

Common Primitives

– Join: how do I begin participating?
– Publish: how do I advertise my file?
– Search: how do I find a file?
– Fetch: how do I retrieve a file?

Outline

• Grid environments:
– Characteristics
– Case study: Grid2003

• Volunteer computing
– Characteristics
– Case study: Seti@home

• Peer-to-Peer
– Characteristics (and some definitions)
– Impact
– Killer app: file sharing
– Case study: Gnutella

P2P Case Study: Gnutella

5

Gnutella: History

• In 2000, J. Frankel and T. Pepper from Nullsoft
released Gnutella

• Soon many other clients: Bearshare, Morpheus,
LimeWire, etc.

• In 2001, many protocol enhancements including
“ultrapeers”

Gnutella Network

Why analyze Gnutella network?
Large scale
– up to 500k nodes, 100TB data, 10M files today

Self-organizing network
Fast growth in its early stages
– more than 50 times during first half of 2001

Open architecture, simple and flexible protocol
Interesting mix of social and technical issues

Gnutella protocol overview

P2P file sharing app. on top of an overlay network
– Nodes maintain open TCP connections
– Messages are broadcasted (flooded) or back-propagated

(Initial) protocol

Protocol refinements (2001 and later)
Ping messages used more efficiently, Vendor specific
extensions, GWebCaches, XML searches, super-nodes
(2-layer hierarchy).

GET, PUSHFile download

QUERY HITQUERYQuery

PONGPINGMembership

Node to nodeBack-propagated
Broadcast
(Flooding)

Gnutella: Overview

• Query Flooding:
– Join: on startup, client contacts a few

other nodes; these become its
“neighbors”

– Publish: no need
– Search: ask neighbors, who is their

neighbors, and so on... when/if found,
reply to sender.

– Fetch: get the file directly from peer

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

Gnutella: All Peers Equal? (1)

56kbps Modem

10Mbps LAN

1.5Mbps DSL

56kbps Modem
56kbps Modem

1.5Mbps DSL

1.5Mbps DSL

1.5Mbps DSL

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

6

Gnutella: Free Riding
All Peers Equal? (2)

More than 25% of Gnutella
clients share no files; 75%
share 100 files or less
Conclusion: Gnutella has a
high percentage of free riders

• If only a few individuals
contribute to the public good,
these few peers effectively act
as centralized servers. Adar and Huberman (Aug ’00)

Gnutella: Discussion

• Pros:
– Fully de-centralized
– Search cost distributed

• Cons:
– Search scope is O(N)
– Search time is O(???)
– Nodes leave often, network unstable

What would you ask about Gnutella?

• Topology?
• Scale?
• Distribution of user requests?
• Node dynamics?
• Network traffic?
• …

Gnutella:
Tools for Network Exploration

Eavesdropper - modified node inserted into the network
to log traffic.
Crawler - connects to all active nodes and uses the
membership protocol to discover graph topology.

Client-server approach.

Gnutella: Network Size

High user interest
Users tolerate high
latency, low quality
results

Better resources
DSL and cable modem
nodes grew from 24%
to 41% over first 6
months.

Explosive growth in 2001, but slowly shrinking
thereafter

Gnutella: Growth Invariants

0

50

100

150

200

0 10000 20000 30000 40000 50000
Number of nodes

N
um

be
r o

f l
in

ks
 ('

00
0)

(1) Unchanged average node connectivity
3.4 links/node on average

7

Gnutella: Growth Invariants

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10 11 12
Node-to-node shortest path (hops)

Pe
rc

en
t o

f n
od

e
pa

irs
 (%

)

(1) Unchanged average node connectivity
(2) Node-to-node distance maintains similar

distribution

Average node-to-node
distance varied only
25% while the network
grew 50 times over 6
months

Is Gnutella a power-law network?

1

10

100

1000

10000

1 10 100
Number of links (log scale)

N
um

. o
f n

od
es

 (l
og

 sc
al

e) November 2000

Power-law networks: the number of links per node
follows a power-law distribution N = L-k

Examples:
The Internet,
In/out links to/from
HTML pages,
Citations network,
US power grid,
Social networks.

Implications: High tolerance to random node failure but low
reliability when facing of an ‘intelligent’ adversary

Is Gnutella a power-law network?

1

10

100

1000

10000

1 10 100
Number of links (log scale)

N
um

be
r o

f n
od

es
(lo

g
sc

al
e)

Later, larger networks display a bimodal distribution
Implications:

High tolerance to random
node failures preserved
Increased reliability
when facing an
attack.

May 2001

Network Resilience

Partial Topology Random 30% die Targeted 4% die

from Saroiu et al., MMCN 2002

Gnutella: Query distribution
Similar to Web pages popularity: Zipf distribution
for query popularity

Significance: caching will work well
Later results: in fact, not really Zipf (caching
might not work that well)

Gnutella: Traffic analysis

 Message Frequency .

-

5

10

15

20

25

1 33 65 97 12
9

16
1

19
3

22
5

25
7

28
9

32
1

35
3

minute

m
es

sa
ge

s
pe

r s
ec

od Ping
Push
Query
Other

≈ 6-8 kbps per link over all connections
Traffic structure

changed over time

8

Gnutella:Total generated traffic

1Gbps (or 330TB/month)!
– Note that this estimate excludes actual file

transfers
– Q: Does it matter?
– Compare to 15,000TB/month estimated in

US Internet backbone (Dec. 2000)

Gnutella Topology Mismatch

Gnutella: Topology Mismatch

A

DB

C

E

H

G

F

Perfect mapping! Physical links
Logical (overlay) links

Gnutella: Topology Mismatch

• Inefficient mapping
• Link D-E needs to support six times higher traffic.

A

DB

C

E

H

G

F

Gnutella: Topology Mismatch

The overlay network topology doesn’t match
the underlying Internet infrastructure
topology!

40% of all nodes are in the 10 largest Autonomous
Systems (AS)
Only 2-4% of all TCP connections link nodes
within the same AS
Largely ‘random wiring’

Gnutella: Summary

Gnutella: self-organizing, large-scale, P2P
application based on overlay network. It works!
Discovered growth invariants specific to large-scale
systems that:

Help predict resource usage.
Give hints for better search and resource
organization techniques.

Growth hindered by the volume of generated traffic
and inefficient resource use.

9

P2P: Summary

• Many different styles; pros and cons of each
– centralized, flooding, swarming, unstructured and

structured routing
• Lessons learned:

– Single points of failure are very bad
– Flooding messages to everyone is bad
– Underlying network topology is important
– Not all nodes are equal
– Need incentives to discourage freeloading
– Privacy and security are important
– Structure can provide theoretical bounds and guarantees

Discussions

• Naturally emerging applications
– Some more than others (science is more planned than

music swapping, theoretically)
• Posing new challenges to the underlying network

– Grids: QoS, payments OK, account for failures, fast
reliable transfers, bulk data transfer

– P2P: huge traffic, new policies for ISP (universities)
– Volunteer computing: not much

• Examples of how applications shape the network protocols.

Questions?

DHT: History

• In 2000-2001, academic researchers said “we want to play
too!”

• Motivation:
– Frustrated by popularity of all these “half-baked” P2P

apps :)
– We can do better! (so we said)
– Guaranteed lookup success for files in system
– Provable bounds on search time
– Provable scalability to millions of node

• Hot Topic in networking ever since

DHT: Overview

• Abstraction: a distributed “hash-table” (DHT) data structure:
– put(id, item);
– item = get(id);

• Implementation: nodes in system form a distributed data
structure

– Can be Ring, Tree, Hypercube, Skip List, Butterfly
Network, ...

DHT: Overview (2)

• Structured Overlay Routing:
– Join: On startup, contact a “bootstrap” node and integrate yourself

into the distributed data structure; get a node id
– Publish: Route publication for file id toward a close node id along

the data structure
– Search: Route a query for file id toward a close node id. Data

structure guarantees that query will meet the publication.
– Fetch: Two options:

• Publication contains actual file => fetch from where query
stops

• Publication says “I have file X” => query tells you 128.2.1.3
has X, use IP routing to get X from 128.2.1.3

10

DHT: Example - Chord

• Associate to each node and file a unique id in an
uni-dimensional space (a Ring)
– E.g., pick from the range [0...2m]
– Usually the hash of the file or IP address

• Properties:
– Routing table size is O(log N) , where N is the

total number of nodes
– Guarantees that a file is found in O(log N) hops

from MIT in 2001

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

DHT: Chord “Finger Table”

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that succeeds or equals n + 2i

• In other words, the ith finger points 1/2n-i way around the ring

DHT: Chord Join
• Assume an identifier space [0..8]

• Node n1 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

DHT: Chord Join

• Node n2 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

11

DHT: Chord Join

• Nodes n0, n6 join
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

DHT: Chord Join

• Nodes:
n1, n2, n0, n6

• Items:
f7, f2

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

DHT: Chord Routing
• Upon receiving a query for item

id, a node:
• Checks whether stores the item

locally
• If not, forwards the query to the

largest node in its successor table
that does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

DHT: Chord Summary

• Routing table size?
– Log N fingers

• Routing time?
– Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

DHT: Discussion

• Pros:
– Guaranteed Lookup
– O(log N) per node state and search scope

• Cons:
– No one uses them? (only one file sharing app)
– Supporting non-exact match search is hard

