CPS 214:

Computer Networks and Distributed Systems

Networked Environments:
Grid and P2P systems

Anda lamnitchi
anda@cs.duke.edu

Class Objectives

« Start thinking of computer networking issue from
the perspective of networked-applications

— Because it’s more intuitive
— Because it’s fun
» Understand some real applications in terms of:
— Motivation, objectives
— Resource/network requirements
— Architecture (“distributed systems” part)

Grid and P2P Environments: Why

¢ Classes of applications rather than applications
¢ Principles rather than isolated solutions
« Popular (very, still) these days
« Deployed, real systems
« Eat up significant network resources
e Generate a lot of hype (and we must recognize it)
¢ Other applications are described in textbook(s)
— Such as email, ftp, web, etc.

Outline

« Grid environments:
— Characteristics
— Case study: Grid2003
« Volunteer computing
— Characteristics
— Case study: Seti@home
* Peer-to-Peer
— Characteristics (and some definitions)
— Impact
— Killer app: file sharing
— Case study: Gnutella

Grids: Characteristics

Users:

— Hundreds from 10s of institutions
— Homogeneous, often trusted (well-established) communities
— Implicit incentives for good behavior

Resources:

— Computers, data, instruments, storage, applications

— Usually owned/administered by institutions

— Highly available
Typical applications: data- and compute-intensive processing

Objective: common infrastructure for basic services
— Resource discovery, Data management, Job management, Authentication,

Monitoring, etc. Lk ﬁ

l‘.mﬂ)

00

Case Study: Grid2003

* More than 25 U.S. LHC institutions, plus one Korean site.
« More than 2000 CPUs in total.
« More than 100 individuals authorized to use the Grid.

« Peak throughput of 500-900 jobs running concurrently,
completion efficiency of 75%.

S

Grid2003 Applications

o gl

6 VOs, 11 Apps
High-energy physics simulation
and data analysis

Cosmology based on analysis of
astronomical survey data

Molecular crystalography from
analysis of X-ray diffraction data

Genome analysis
System “exercising” applications

Grid2003 Applications

» CMS proton-proton collision simulation

» ATLAS proton-proton collision simulation

» LIGO gravitational wave search

» SDSS galaxy cluster detection

» ATLAS interactive analysis

» BTeV proton-antiproton collision simulation
» SnB biomolecular analysis

* GADU/Gnare: genome analysis

 Various computer science experiments

www.ivdgl.org/grid2003/applications

« Each virtual organization
includes its own set of system
resources (compute nodes,
storage, etc.) and people. VO
membership info is managed
system-wide, but policies are i e et
enforced at each site. i

« Throughput is a key metric for ~— kesssssmmsssssseess R =
success, and monitoring tools -
are used to measure it and
generate reports for each VO.

Grid2003 Metrics

Number of CPUs 400 2762 (28 sites)
Number of users >10 102 (16)
Number of applications >4 10 (+CS)
Number of sites running concurrent apps >10 17

Peak number of concurrent jobs 1000 1100
Data transfer per day >2-3TB 4.4 TB max

Outline

¢ Grid environments:
— Characteristics
— Case study: Grid2003
* Volunteer computing
— Characteristics
— Case study: Seti@home
* Peer-to-Peer
— Characteristics (and some definitions)
— Impact
— Killer app: file sharing
— Case study: Gnutella

Application: Number crunching

» Examples: Seti@Home, Entropia, UnitedDevices,
DistributedScience, many others

* Incentives
— ET cool, physics/AIDS research/etc. less so
» Approach suitable for a particular class of problems.
» Some characteristics (for Seti@Home):
— Massive parallelism
- Low bandwidth/computation ratio
— Fixed-rate data processing task
— Error tolerance
 Users do donate *real* resources
- Why?

$1.5M / year
extra consumed power

SETI@home

« SETI @home “is a scientific experiment that uses Internet-connected computers
in the Search for Extraterrestrial Intelligence (SETI). You can participate by running a free

program that downloads and analyzes radio telescope data. “
* Isit Grid? Or P2P?
* Puts to work huge pool of underutilized resources

Total Last 24 Hours
(as of 01/13/2005 am)
Users 5,315,717 1,193
Results received 1,724 millions 1.45 millions
Total CPU time | 2.18 million years 1055.442 years

Average CPU | 11 hr 07 min 08.4

time/work unit sec 6 hr 21 min 15.4 sec

P2P Definition(s)

A number of definitions coexist:

» Def1: “A class of applications that takes advantage of
resources — storage, cycles, content, human presence —
available at the edges of the Internet.”

— Edges often turned off, without permanent IP addresses

» Def 2: “A class of decentralized, self-organizing distributed
systems, in which all or most communication is symmetric.”

« Lots of other definitions that fit in between
 Lots of (P2P?) systems that fit nowhere...

Outline

 Grid environments:
— Characteristics
— Case study: Grid2003
* Volunteer computing
— Characteristics
— Case study: Seti@home
¢ Peer-to-Peer
— Characteristics (and some definitions)
— Impact
— Killer app: file sharing
— Case study: Gnutella

P2P: Characteristics

e Users:
— Millions
— Anonymous individuals
— No implicit incentives for good behavior (free riding, cheating)
* Resources:
— Computing cycles XOR files
— Resources owned/administered (?) by user
— Intermittent (user/resource) participation:
* Gnutella: average lifetime 60 min. (‘01)
« MojoNation: 1/6 users always connected (‘01)
» Overnet: 50% nodes available 70% of time over a week (‘02)
« Typical applications: file retrieval or parallel computations
« Vertically integrated solutions:

P2P Impact: Widespread adoption

e KazaA - 170 millions downloads (3.5M/week)
the most popular application ever!

* Number of users for file-sharing applications
()
01/03/2005, 19:00)

eDonkey 2,698,388
FastTrack 2,065,657
Warez 1,402,729
Gnutella 1,115,086
OverNet 1,056,558
DirectConnect | 273,485

MP2P 264,043

— Althouah sians of change: BOINC

P2P Impact (2): -

» P2P generated traffic now dc':_
load N

- traffic statistics
— Cornell.edu (March '02): 60% P2P

— UChicago estimate (Marc =«
control traffic about 1% ¢ m

60% 0 Other

50% 0 Data transfers
40% B Unidentified
30% @ File sharing
2%

10%

0%

Feb.02 Aug.02 Feb.03

P2P Impact (3)

» Might force companies to change their business
models

« Data copying and distribution carries almost zero cost
now -> this might impact copyright laws

* “New” research domain - grants and PhD theses

P2P killer app: File sharing

« Too many to list them all:

— Napster, FastTrack (KaZaA, Kazaal.ite), Gnutella (LimeWire,
Morpheus, BearShare), iMesh, eDonkey, MP2P, DirectConnect,
Filetopia,

« New names/favorites appearing all the time

« Other app:
— Instant messaging (Yahoo, AOL)
— Collaborative environments (Groove)
— Backup storage (HiveNet, OceanStore)
— Spam filtering
— Anonymous email
— Censorship-resistant publishing systems (Ethernity, Freenet)
— Content distribution
— Network measurements

The Lookup Problem

Common Primitives

— Join: how do | begin participating?
— Publish: how do | advertise my file?
— Search: how do I find a file?

— Fetch: how do | retrieve a file?

2
2 | =
N 2
1 3
Key="title”
Value=MP3 data.. i
! Client
Publisher Lookup(“title™)
2
N, N Nq
2 4 *
Outline

 Grid environments:
— Characteristics
— Case study: Grid2003
» Volunteer computing
— Characteristics
— Case study: Seti@home
* Peer-to-Peer
— Characteristics (and some definitions)
— Impact
— Killer app: file sharing
— Case study: Gnutella

P2P Case Study: Gnutella

Gnutella: History

« In 2000, J. Frankel and T. Pepper from Nullsoft
released Gnutella

« Soon many other clients: Bearshare, Morpheus,
LimeWire, etc.

¢ In 2001, many protocol enhancements including
“ultrapeers”

Gnutella Network

Why analyze Gnutella network?
= |arge scale
— up to 500k nodes, 100TB data, 10M files today
= Self-organizing network
= Fast growth in its early stages
— more than 50 times during first half of 2001
= Open architecture, simple and flexible protocol
= Interesting mix of social and technical issues

Gnutella protocol overview

= P2P file sharing app. on top of an overlay network
— Nodes maintain open TCP connections
— Messages are broadcasted (flooded) or back-propagated

- (|n|t|a|) pl’OtOCOl (irlgz(;(i::t) Back-propagated Node to node
Membership PING PONG
Query QUERY QUERY HIT
File download GET, PUSH

= Protocol refinements (2001 and later)
= Ping messages used more efficiently, Vendor specific
extensions, GWebCaches, XML searches, super-nodes
(2-layer hierarchy).

Gnutella; Overview

 Query Flooding:
—Join: on startup, client contacts a few

other nodes; these become its
“neighbors”

— Publish: no need

— Search: ask neighbors, who is their
neighbors, and so on... when/if found,
reply to sender.

— Fetch: get the file directly from peer

Gnutella; Search

| have file A.
I have file A. ’<—‘ [e
% A% £ “
=

Where is file A?

Gnutella: All Peers Equal? (1)

1.5Mbps DSL ’ 1.5Mbps DSL

skbps Modem

’lOMbps LAN

1.5Mbps DSL . e
56kbps Modem
56kbps Modem

Gnutella: Free Riding
All Peers Equal? (2)

Rank Crdering of Peers by Number of Files Shared

More than 25% of Gnutella
clients share no files; 75%
share 100 files or less

noon

T

wm L

3
= Conclusion: Gnutella has a Pom \\
high percentage of free riders E " N
« If only a few individuals : N o oaew waw
contribute to the public good, Fank Eraseing of13.325 Hadet
these few peers effectively act Romi

as centralized servers. Adar and Huberman (Aug '00)

Gnutella: Discussion

e Pros:
— Fully de-centralized
— Search cost distributed
» Cons:
— Search scope is O(N)
— Search time is O(?7?)
— Nodes leave often, network unstable

What would you ask about Gnutella?

« Topology?

e Scale?

Distribution of user requests?
« Node dynamics?

Network traffic?

Gnutella:
Tools for Network Exploration

= Eavesdropper - modified node inserted into the network
to log traffic.
= Crawler - connects to all active nodes and uses the
membership protocol to discover graph topology.
= Client-server approach.

Gnutella: Network Size

Explosive growth in 2001, but slowly shrinking
thereafter

’’’’’’ et et osts vy 48 L estin e High user interest
Users tolerate high
latency, low quality
results

Better resources
DSL and cable modem
nodes grew from 24%
to 41% over first 6
months.

Gnutella; Growth Invariants

(1) Unchanged average node connectivity
3.4 links/node on average

~
S
3

®

H
@
3

°*

H
1)
3

Number of links ('000)

a
3

o

0 10000 20000 30000 40000 50000
Number of nodes|

Gnutella: Growth Invariants

(1) Unchanged average node connectivity
(2) Node-to-node distance maintains similar
distribution

? 50%
2 \
Average node-to-node |'§ 40% 1
distance varied only 2
. e
25% while the network |%s
grew 50 times over 6 5 20%
months < 10%
0%
1 2 3 4 5 6 7 8 9 10 11 12
Node-to-node shortest path (hops)|

Is Gnutella a power-law network?

Power-law networks: the number of links per node

follows a power-law distribution N=L*
10000
gmm November 2000 Examples:
g « The Internet,
R = In/out links to/from
5 ”ﬂ: HTML pages,
£ %' = Citations network,
1 M = US power grid,
! Numtgroflmks(logscale) . SOCiaI networks.

Implications: High tolerance to random node failure but low
reliability when facing of an “intelligent’ adversary

Is Gnutella a power-law network?

= Later, larger networks display a bimodal distribution
= Implications:
« High tolerance to random 10000
node failures preserved
« Increased reliability
when facing an
attack.

May 2001

i
=)
S
3

*
TN
\

A3
S

—

10) 100|
Number of links (log scale)

Number of nodes
(log scale)
=
8

=
1S

-

-

Network Resilience

Partial Topology Random 30% die Targeted 4% die

from Saroiu et al., MMCN 2002

Gnutella: Query distribution

Similar to Web pages popularity: Zipf distribution
for query popularity
Significance: caching will work well

Later results: in fact, not really Zipf (caching
might not work that well)

B

Hit rate (%)

Gnutella: Traffic analysis

~ 6-8 kbps per link over all connections
Traffic structure

3
R 825 — Message Frequency —_ pi
changed over time | & 98 ey —ring
220 — Query
<3 ﬂ | Other
% 15]
10 vﬂv" I
5

minute|

Gnutella:Total generated traffic

1Gbps (or 330TB/month)!
— Note that this estimate excludes actual file
transfers
—Q: Does it matter?
— Compare to 15,000TB/month estimated in
US Internet backbone (Dec. 2000)

Gnutella Topology Mismatch

Gnutella: Topology Mismatch

—— Physical links
<~ Logical (overlay) links

Gnutella: Topology Mismatch

« Link D-E needs to support six times higher traffic.

Gnutella: Topology Mismatch

The overlay network topology doesn’t match
the underlying Internet infrastructure
topology!

= 40% of all nodes are in the 10 largest Autonomous
Systems (AS)

= Only 2-4% of all TCP connections link nodes
within the same AS

= Largely ‘random wiring’

Gnutella: Summary

= Gnutella: self-organizing, large-scale, P2P
application based on overlay network. It works!
= Discovered growth invariants specific to large-scale
systems that:
= Help predict resource usage.
= Give hints for better search and resource
organization techniques.
= Growth hindered by the volume of generated traffic
and inefficient resource use.

P2P: Summary

« Many different styles; pros and cons of each

— centralized, flooding, swarming, unstructured and
structured routing

« Lessons learned:
— Single points of failure are very bad
— Flooding messages to everyone is bad
— Underlying network topology is important
— Not all nodes are equal
— Need incentives to discourage freeloading
— Privacy and security are important
— Structure can provide theoretical bounds and guarantees

Discussions

« Naturally emerging applications

— Some more than others (science is more planned than
music swapping, theoretically)

« Posing new challenges to the underlying network

— Grids: QoS, payments OK, account for failures, fast
reliable transfers, bulk data transfer

— P2P: huge traffic, new policies for ISP (universities)
— Volunteer computing: not much

« Examples of how applications shape the network protocols.

Questions?

DHT: History

« In 2000-2001, academic researchers said “we want to play
too!”

« Motivation:
— Frustrated by popularity of all these “half-baked” P2P
apps :)
— We can do better! (so we said)
— Guaranteed lookup success for files in system
— Provable bounds on search time
— Provable scalability to millions of node
« Hot Topic in networking ever since

DHT: Overview

« Abstraction: a distributed “hash-table” (DHT) data structure:
- put(id, item);
— item = get(id);

« Implementation: nodes in system form a distributed data
structure

— Can be Ring, Tree, Hypercube, Skip List, Butterfly
Network, ...

DHT: Overview (2)

« Structured Overlay Routing:
— Join: On startup, contact a “bootstrap” node and integrate yourself
into the distributed data structure; get a node id
Publish: Route publication for file id toward a close node id along
the data structure
— Search: Route a query for file id toward a close node id. Data
structure guarantees that query will meet the publication.
— Fetch: Two options:

« Publication contains actual file => fetch from where query
stops

« Publication says “I have file X" => query tells you 128.2.1.3
has X, use IP routing to get X from 128.2.1.3

DHT: Example - Chord

 Associate to each node and file a unique id in an
uni-dimensional space (a Ring)

—E.g., pick from the range [0...2"M]

—Usually the hash of the file or IP address
 Properties:

—Routing table size is O(log N) , where N is the

total number of nodes
—Guarantees that a file is found in O(log N) hops

from MIT in 2001

DHT: Consistent Hashing

Key 5—— k5
Node 105\

N105 0
2
(Circular ID space B N32

NQO‘

"
K80
A key is stored at its successor: node with next higher 1D

DHT: Chord Basic Lookup

N120 —]
N10
// 2 . “Where is key 807"

ats \

“N90 has K80" Q@

K80 @l //
l

N60

DHT: Chord “Finger Table”

« Entry i in the finger table of node n is the first node that succeeds or equals n + 2
« In other words, the ith finger points 1/2" way around the ring

DHT: Chord Join

» Assume an identifier space [0..8]

Succ. Table
i fid+2'|suce
2|1

* Node n1 joins

i
0|

11 3|1
2 5|1

DHT: Chord Join

Succ. Table

i lid+2'|succ

« Node n2 joins

0|
1 3|1
2|

Succ. Table
i |id+2'|succ

0|
1
2|

10

DHT: Chord Join

Succ. Table
i [id+2'|succ
0 1
122
. 2l 4|0
« Nodes n0, né join L Tame
0 \.7 i fid+2'|succ
<s 7' o 2|2
1 3 6
Succ. Table s°®
i [id+2'|succ
o 7|0 ||€Rs 26
i1ofo
2 2|2

Succ.

Table

i Jid+2'|succ

0
1
2|

DHT: Chord Join

Nodes: i [id+2'|succ
. . o 1|1
nl, n2, n0, n6 | 22
_‘ 2l 4|0
e Items:
7,2

Succ. Table e

id+2'|succ

i

0|

1 3|6
2|

o
¥
N
@
2
5
3

0
11 0|0
2|

2
0 \’ Suce. Table jiems

COE

1

DHT: Chord Routing

Succ. Table jroms

L . i [id+2'|succ
«Upon receiving a query for item o 11
id, a node: 1 2] 2
« Checks whether stores the item 2
locally

« If not, forwards the query to the
largest node in its successor table ¢
that does not exceed id 7

Succ. Table ’6

Succ. Table

i [id+2'

succ

0|
1
2|

DHT: Chord Summary

* Routing table size?
—Log N fingers
* Routing time?
—Each hop expects to 1/2 the distance to the
desired id => expect O(log N) hops.

DHT: Discussion

¢ Pros:
— Guaranteed Lookup

— O(log N) per node state and search scope
» Cons:

— No one uses them? (only one file sharing app)
— Supporting non-exact match search is hard

11

