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What’s a DHT?

Distributed Hash Table

— Peer-to-peer algorithm to offering put/get interface

— Associative map for peer-to-peer applications

« More generally, provide lookup functionality
— Map application-provided hash values to nodes
— (Just as local hash tables map hashes to memory locs.)
— Put/get then constructed above lookup

« Many proposed applications

— File sharing, end-system multicast, aggregation trees
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How DHTs Work

How do we
ensure the put
and the get
find the same
machine?
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Step 1: Partition Key Space

« Each node in DHT will store some k,v pairs
» Given a key space K, e.g. [0, 2169):

— Choose an identifier for each node, id; € K,
uniformly at random

— A pair kv is stored at the node whose identifier
is closest to k
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Step 2: Build Overlay Network

 Each node has two sets of neighbors

— Important for correctness
e Long-hop neighbors
— Allow puts/gets in O(log n) hops
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Step 3: Route Puts/Gets Thru Overlay

¢ Route greedily, always making progress
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How Does Lookup Work?

Source

* Assign IDs to nodes
— Map hash values to node
with closest ID
* Leaf set is successors
and predecessors
— All that’s needed for
correctness
* Routing table matches
successively longer
prefixes
— Allows efficient lookups

Lookup ID
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How Bad is Churn in Real Systems?
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‘An hour is an incredibly short MTTF! ‘

Authors ‘ Systems Observed ‘ Session Time
SGG02 Gnutella, Napster 50% < 60 minutes
CLLO02 Gnutella, Napster 31% < 10 minutes
SWo02 FastTrack 50% < 1 minute
BSV03 Overnet 50% < 60 minutes
GDS03 Kazaa 50% < 2.4 minutes
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Can DHTs Handle Churn?
A Simple Test

« Start 1,000 DHT processes on a 80-CPU cluster
— Real DHT code, emulated wide-area network
— Models cross traffic and packet loss
 Churn nodes at some rate
* Every 10 seconds, each machine asks:
“Which machine is responsible for key k?”
— Use several machines per key to check consistency
— Log results, process them after test

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Test Results

* In Tapestry (the OceanStore DHT), overlay partitions

— Leads to very high level of inconsistencies

— Worked great in simulations, but not on more realistic network
» And the problem isn’t limited to Tapestry:
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The Bamboo DHT

« Forget about comparing Chord-Pastry-Tapestry
— Too many differing factors
— Hard to isolate effects of any one feature

* Instead, implement a new DHT called Bamboo
— Same overlay structure as Pastry
— Implements many of the features of other DHTs
— Allows testing of individual features independently
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How Bamboo Handles Churn
(Overview)

1. Chooses neighbors for network proximity
— Minimizes routing latency in non-failure case
2. Routes around suspected failures quickly
— Abnormal latencies indicate failure or congestion
— Route around them before we can tell difference
3. Recovers failed neighbors periodically
— Keeps network load independent of churn rate
— Prevents overlay-induced positive feedback cycles
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Routing Around Failures

 Under churn, neighbors may have failed
¢ To detect failures, acknowledge each hop
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Routing Around Failures

« If we don’t receive an ACK, resend through

different neighbor
m
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Computing Good Timeouts

« Must compute timeouts carefully
— If too long, increase put/get latency
— If too short, get message explosion
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Computing Good Timeouts

* Chord errs on the side of caution
— Very stable, but gives long lookup latencies
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Calculating Good Timeouts
* Use TCP-style timers _
— Keep past history of latencies Regursive

— Use this to compute timeouts
for new requests

» Works fine for recursive
lookups
— Only talk to neighbors, so
history small, current
* In iterative lookups, source
directs entire lookup

— Must potentially have good
timeout for any node
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Computing Good Timeouts

 Keep past history of latencies
— Exponentially weighted mean, variance

« Use to compute timeouts for new requests
— timeout = mean + 4 x variance

* When a timeout occurs
— Mark node “possibly down”: don’t use for now
— Re-route through alternate neighbor
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Timeout Estimation Performance
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Recovering From Failures

 Can’t route around failures forever
— Will eventually run out of neighbors
» Must also find new nodes as they join
— Especially important if they’re our immediate
predecessors or successors:
responsibility
1
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Recovering From Failures

* Can’t route around failures forever
— Will eventually run out of neighbors
» Must also find new nodes as they join
— Especially important if they’re our immediate
predecessors or successors:
old responsmlllty/ new node
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new responsibility
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Recovering From Failures

 Obvious algorithm: reactive recovery

— When a node stops sending acknowledgements,
notify other neighbors of potential replacements
— Similar techniques for arrival of new nodes
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Recovering From Failures

* Obvious algorithm: reactive recovery

— When a node stops sending acknowledgements,
notify other neighbors of potential replacements

— Similar techniques for arrival of new nodes
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The Problem with Reactive Recovery

« What if B is alive, but network is congested?
— C still perceives a failure due to dropped ACKs
— C starts recovery, further congesting network
— More ACKs likely to be dropped
— Creates a positive feedback cycle
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The Problem with Reactive Recovery

« What if B is alive, but network is congested?
* This was the problem with Pastry

— Combined with poor congestion control, causes
network to partition under heavy churn
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Periodic Recovery

 Every period, each node sends its neighbor
list to each of its neighbors
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Periodic Recovery

* Every period, each node sends its neighbor
list to each of its neighbors
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Periodic Recovery

 Every period, each node sends its neighbor
list to each of its neighbors
— Breaks feedback loop
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Periodic Recovery

« Every period, each node sends its neighbor
list to each of its neighbors
— Breaks feedback loop
— Converges in logarithmic number of periods
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Bandwidth (kBisnode)

Periodic Recovery Performance

« Reactive recovery expensive under churn
 Excess bandwidth use leads to long latencies
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Virtual Coordinates

» Machine learning algorithm to estimate latencies
— Distance between coords. proportional to latency
— Called Vivaldi; used by MIT Chord implementation

¢ Compare with TCP-style under recursive routing
— Insight into cost of iterative routing due to timeouts
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Proximity Neighbor Selection (PNS)

« For each neighbor, may be many candidates
— Choosing closest with right prefix called PNS
— One of the most researched areas in DHTSs
— Can we achieve good PNS under churn?

* Remember:
— leaf set for correctness
— routing table for efficiency?

« Insight: extend this philosophy
— Any routing table gives O(log N) lookup hops
— Treat PNS as an optimization only
— Find close neighbors by simple random sampling
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PNS Results

(very abbreviated--see paper for more)

» Random sampling
almost as good as 500

No PNS ——
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Conclusions/Recommendations

 Avoid positive feedback cycles in recovery
— Beware of “false suspicions of failure”
— Recover periodically rather than reactively
» Route around potential failures early
— Don’t wait to conclude definite failure
— TCP-style timeouts quickest for recursive routing
— Virtual-coordinate-based timeouts not prohibitive
» PNS can be cheap and effective
— Only need simple random sampling
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For code and more information:
bamboo-dht.org




