Handling Churn ina DHT

Sean Rhea, Dennis Geels,
Timothy Roscoe, and John Kubiatowicz

UC Berkeley and Intel Research Berkeley

What’s a DHT?

Distributed Hash Table

— Peer-to-peer algorithm to offering put/get interface

— Associative map for peer-to-peer applications

« More generally, provide lookup functionality
— Map application-provided hash values to nodes
— (Just as local hash tables map hashes to memory locs.)
— Put/get then constructed above lookup

« Many proposed applications

— File sharing, end-system multicast, aggregation trees

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

How DHTs Work

How do we
ensure the put
and the get
find the same
machine?

[AA

\I:I ’/‘D@ t KV
ut(k,,v g >
p (1 l) @ get(kl)

OpenDHT: A Public DHT Service March 28, 2005

Step 1: Partition Key Space

« Each node in DHT will store some k,v pairs
» Given a key space K, e.g. [0, 2169):

— Choose an identifier for each node, id; € K,
uniformly at random

— A pair kv is stored at the node whose identifier
is closest to k

-0+ 01+0 00 00 0 0 2

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Step 2: Build Overlay Network

 Each node has two sets of neighbors

— Important for correctness
e Long-hop neighbors
— Allow puts/gets in O(log n) hops

N

00 -0 0 0 O 00 O O v

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Step 3: Route Puts/Gets Thru Overlay

¢ Route greedily, always making progress

get(k)
-0 0000000 @ 2

Sean C. Rhea OpenDHT: A Public DHT Service

March 28, 2005

How Does Lookup Work?

Source

* Assign IDs to nodes
— Map hash values to node
with closest ID
* Leaf set is successors
and predecessors
— All that’s needed for
correctness
* Routing table matches
successively longer
prefixes
— Allows efficient lookups

Lookup ID

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

How Bad is Churn in Real Systems?

f Lifetime |

)
Session
Time %
time

arrive depart arrive depart

‘An hour is an incredibly short MTTF! ‘

Authors ‘ Systems Observed ‘ Session Time
SGG02 Gnutella, Napster 50% < 60 minutes
CLLO02 Gnutella, Napster 31% < 10 minutes
SWo02 FastTrack 50% < 1 minute
BSV03 Overnet 50% < 60 minutes
GDS03 Kazaa 50% < 2.4 minutes

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Can DHTs Handle Churn?
A Simple Test

« Start 1,000 DHT processes on a 80-CPU cluster
— Real DHT code, emulated wide-area network
— Models cross traffic and packet loss
 Churn nodes at some rate
* Every 10 seconds, each machine asks:
“Which machine is responsible for key k?”
— Use several machines per key to check consistency
— Log results, process them after test

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Test Results

* In Tapestry (the OceanStore DHT), overlay partitions

— Leads to very high level of inconsistencies

— Worked great in simulations, but not on more realistic network
» And the problem isn’t limited to Tapestry:

...... FreePastry ; . MIT Chord
g 10 gl T = N Chord
2 1) I Y Bambsxoso
g Yo 16h N A
=L ih 47 min | E N
g 40 g TN
4 " ¢ g 1} —]
] 2 “onsistent 13 = |
&£ Compleiad — ot J
e o a & 16 32 64 128
o 30 o 500 200
N Median Session Time (min)
Time (minutes)
Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

The Bamboo DHT

« Forget about comparing Chord-Pastry-Tapestry
— Too many differing factors
— Hard to isolate effects of any one feature

* Instead, implement a new DHT called Bamboo
— Same overlay structure as Pastry
— Implements many of the features of other DHTs
— Allows testing of individual features independently

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

How Bamboo Handles Churn
(Overview)

1. Chooses neighbors for network proximity
— Minimizes routing latency in non-failure case
2. Routes around suspected failures quickly
— Abnormal latencies indicate failure or congestion
— Route around them before we can tell difference
3. Recovers failed neighbors periodically
— Keeps network load independent of churn rate
— Prevents overlay-induced positive feedback cycles

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Routing Around Failures

 Under churn, neighbors may have failed
¢ To detect failures, acknowledge each hop

NS N

-9+ 0Or 00 0 00 0 @ 2

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Routing Around Failures

« If we don’t receive an ACK, resend through

different neighbor
m

-0® O 0 @ 00 O O v

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Computing Good Timeouts

« Must compute timeouts carefully
— If too long, increase put/get latency
— If too short, get message explosion

s
-0 0000 00— 00 2

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Computing Good Timeouts

* Chord errs on the side of caution
— Very stable, but gives long lookup latencies

S
-0+ 0000000 0 2

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Calculating Good Timeouts
* Use TCP-style timers _
— Keep past history of latencies Regursive

— Use this to compute timeouts
for new requests

» Works fine for recursive
lookups
— Only talk to neighbors, so
history small, current
* In iterative lookups, source
directs entire lookup

— Must potentially have good
timeout for any node

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Computing Good Timeouts

 Keep past history of latencies
— Exponentially weighted mean, variance

« Use to compute timeouts for new requests
— timeout = mean + 4 x variance

* When a timeout occurs
— Mark node “possibly down”: don’t use for now
— Re-route through alternate neighbor

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Timeout Estimation Performance

Fixed 5s Timeouts —+—

o 2 4 Smart Timeouts
2 15 |
o |
=
= 1
=]
2 . =
=) 05 | .

0

2 4 B 16 32 64 128 256
Median Session Time (min)
Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Recovering From Failures

 Can’t route around failures forever
— Will eventually run out of neighbors
» Must also find new nodes as they join
— Especially important if they’re our immediate
predecessors or successors:
responsibility
1

-0®+0——0 0 00 0 @ 2

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Recovering From Failures

* Can’t route around failures forever
— Will eventually run out of neighbors
» Must also find new nodes as they join
— Especially important if they’re our immediate
predecessors or successors:
old responsmlllty/ new node
-0 i+0 00 0 00 @ @ 2
new responsibility

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Recovering From Failures

 Obvious algorithm: reactive recovery

— When a node stops sending acknowledgements,
notify other neighbors of potential replacements
— Similar techniques for arrival of new nodes

N,

- OO0 r 00 00 0 O 2

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Recovering From Failures

* Obvious algorithm: reactive recovery

— When a node stops sending acknowledgements,
notify other neighbors of potential replacements

— Similar techniques for arrival of new nodes

-9+ 000 0000 2

B failed, use D B failed, use A

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

The Problem with Reactive Recovery

« What if B is alive, but network is congested?
— C still perceives a failure due to dropped ACKs
— C starts recovery, further congesting network
— More ACKs likely to be dropped
— Creates a positive feedback cycle

N

- OO+ D00 00 0 0 2

B failed, use D B failed, use A

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

The Problem with Reactive Recovery

« What if B is alive, but network is congested?
* This was the problem with Pastry

— Combined with poor congestion control, causes
network to partition under heavy churn

OO+ O FO O 00 0 O 2%

B failed, use D B failed, use A

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery

 Every period, each node sends its neighbor
list to each of its neighbors

S N

0-O® 10O %@-@—“—.—.—‘\ 2160
NN

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery

* Every period, each node sends its neighbor
list to each of its neighbors

N

- OO 0O Fre O 00 @ @ {2
NN T

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery

 Every period, each node sends its neighbor
list to each of its neighbors
— Breaks feedback loop

N

- OO0 e 0O 00 0 O 2
NN T

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Periodic Recovery

« Every period, each node sends its neighbor
list to each of its neighbors
— Breaks feedback loop
— Converges in logarithmic number of periods

N T

- 9@ IO %@—@—“—.—.—% 2160
NN

my neighbors are A, B, D, and E

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Bandwidth (kBisnode)

Periodic Recovery Performance

« Reactive recovery expensive under churn
 Excess bandwidth use leads to long latencies

e ——— -

fo—— _
Reactive |

Reactive

Perindic Perodic

7

‘..

5| 47 min 25 min "

H Jﬁ !
3 |

1

1

'_I ll” *

T\ l'LLh -Uh

Time {minutes)

5
4}
L}
.
1

i5th Percentile Latency (s)

Time (minules)

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Virtual Coordinates

» Machine learning algorithm to estimate latencies
— Distance between coords. proportional to latency
— Called Vivaldi; used by MIT Chord implementation

¢ Compare with TCP-style under recursive routing
— Insight into cost of iterative routing due to timeouts

[Fixed 55 —— |
Vivaldi
X TCPstyle —w— |

hY

LAy ,

[

| |

| N\ |
I i \\ LN
:’ 05 | ~ i

| }

L

)

aency (5)

.
e
[
2 4 8 16 32 64 28250

Sean C. Rhea Median Session Tune {min) March 28, 2005

Proximity Neighbor Selection (PNS)

« For each neighbor, may be many candidates
— Choosing closest with right prefix called PNS
— One of the most researched areas in DHTSs
— Can we achieve good PNS under churn?

* Remember:
— leaf set for correctness
— routing table for efficiency?

« Insight: extend this philosophy
— Any routing table gives O(log N) lookup hops
— Treat PNS as an optimization only
— Find close neighbors by simple random sampling

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

PNS Results

(very abbreviated--see paper for more)

» Random sampling
almost as good as 500

No PNS ——

450 Pastry tuni
qudom Samy
400 | %o Pastry

everything else
— 24% latency
improvement free

— 42% improvement for 25
40% more b.w.

300 K‘_‘k__.
— Compare to 68%-84% 250 ——

improvement by using - - —
good timeouts 600 800 1000 1200 1400
R Other algorithms more Bandwidth (bytes/s/node)
complicated, not much
better

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

Mean Latency (ms)

Conclusions/Recommendations

 Avoid positive feedback cycles in recovery
— Beware of “false suspicions of failure”
— Recover periodically rather than reactively
» Route around potential failures early
— Don’t wait to conclude definite failure
— TCP-style timeouts quickest for recursive routing
— Virtual-coordinate-based timeouts not prohibitive
» PNS can be cheap and effective
— Only need simple random sampling

Sean C. Rhea OpenDHT: A Public DHT Service March 28, 2005

For code and more information:
bamboo-dht.org

