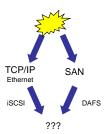
Outrunning Moore's Law

Can IP-SANs close the host-network gap?

Jeff Chase Duke University

But first....

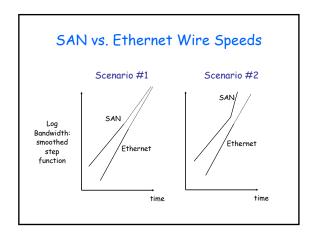

- This work addresses questions that are important in the industry right now.
- It is an outgrowth of Trapeze project: 1996-2000.
- · It is tangential to my primary research agenda.
 - Resource management for large-scale shared service infrastructure.
 - Self-managing computing/storage utilities
 - Internet service economy
 - Federated distributed systems
 - Amin Vahdat will speak about our work on Secure Highly Available Resource Peering (SHARP) in a few weeks.

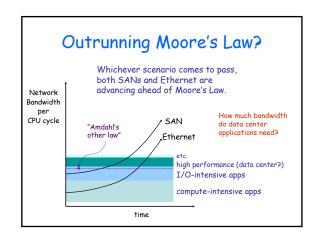
A brief history

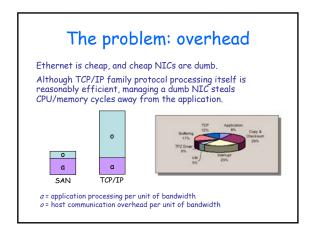
- Much research on fast communication and end-system TCP/IP performance through 1980s and early 1990s.
- Common theme: advanced NIC features and host/NIC boundary.
 - TCP/IP offload controversial: early efforts failed
 - User-level messaging and Remote Direct Memory Access or RDMA (e.g., unet)
- SAN market grows enormously in mid-1990s
 - VI Architecture standardizes SAN messaging host interface in 1997-1998.
- FibreChannel (FC) creates market for network block storage.
- Then came Gigabit Ethernet...

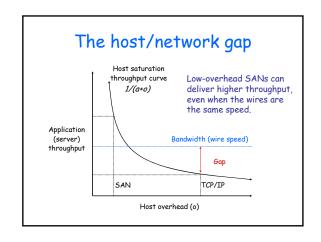
A brief history, part 2

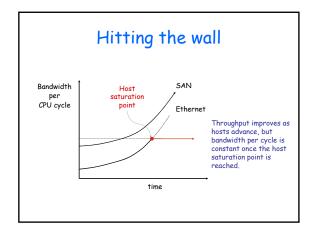
- · "Zero-copy" TCP/IP
- "First" gigabit TCP [1999]
- Consensus that zero-copy sockets are not general [2001]
- IETF RDMA working group [2002]
- Direct Access File System [2002]
- iSCSI block storage for TCP/IP
 Revival of TCP/IP offload
- 10+6F
- NFS/RDMA, offload chips, etc.
- · Uncalibrated marketing claims


Ethernet/IP in the data center


- 10+Gb/s Ethernet continues the trend of Ethernet speeds outrunning Moore's Law.
- Ethernet runs IP
- This trend increasingly enables IP to compete in "high performance" domains.
 - Data centers and other "SAN" markets
 - {System, Storage, Server, Small} Area Network
 - Specialized/proprietary/nonstandard
 - Network storage: iSCSI vs. FC
 - Infiniband vs. IP over 10+GE




Ethernet/IP vs. "Real" SANs


- IP offers many advantages
 - One network
 - Global standard
 - Unified management, etc.
- · But can IP really compete?
- · What do "real" SANs really offer?
 - Fatter wires?
 - Lower latency?
 - Lower host overhead

"IP SANs"

- If you believe in the problem, then the solution is to attach hosts to the faster wires with smarter NICs.
 - Hardware checksums, interrupt suppression
 - Transport offload (TOE)
 - Connection-aware w/ early demultiplexing
 - ULP offload (e.g., iSCSI)
 - Direct data placement/RDMA
- Since these NICs take on the key characteristics of SANs, let's use the generic term "IP-SAN".
 - or just "offload"

How much can IP-SANs help?

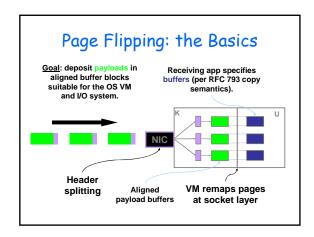
- · IP-SAN is a difficult engineering challenge.
 - It takes time and money to get it right.
- · LAWS [Shivam&Chase03] is a "back of napkin" analysis to explore potential benefits and limitations.
- Figure of merit: marginal improvement in peak application throughput ("speedup")
- Premise: Internet servers are fully pipelined
 - Ignore latency (your mileage may vary)
 - IP-SANs can improve throughput if host saturates.

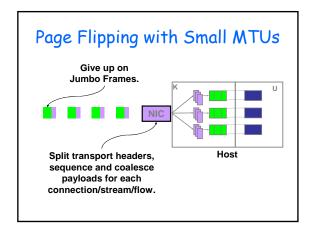
What you need to know (about)

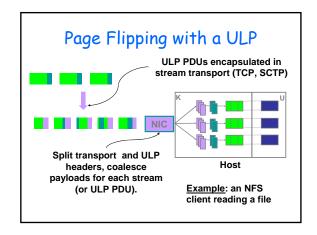
- Importance of overhead and effect on performance
- Distinct from latency, bandwidth
- Sources of overhead in TCP/IP communication
- Per segment vs. per byte (copy and checksum) MSS/MTU size, jumbo frames, path MTU discovery
- Data movement from NIC through kernel to app
- RFC 793 (copy semantics) and its impact on the socket model and data copying overhead.
- Approaches exist to reduce it, and they raise critical architectural issues (app vs. OS vs. NIC)
- RDMA+offload and the layer controversy
- Skepticism of marketing claims for proposed fixes.
- Amdahl's Law
- I FNs

Focusing on the Issue

- · The key issue IS NOT:
 - The pipes: Ethernet has come a long way since 1981
 - · Add another zero every three years?
 - Transport architecture: generality of IP is worth the cost.
 - Protocol overhead: run better code on a faster CPU.
 - Interrupts, checksums, etc: the NIC vendors can innovaté here without us.
- All of these are part of the bigger picture, but we don't need an IETF working group to "fix" them.

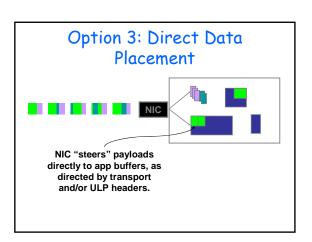

The Copy Problem


- · The key issue IS data movement within the host.
 - Combined with other overheads, copying sucks up resources needed for application processing.
- The problem won't go away with better technology.
 - Faster CPUs don't help: it's the memory.
- General solutions are elusive...on the receive side.
- The problem exposes basic structural issues:
 - interactions among NIC, OS, APIs, protocols.


"Zero-Copy" Alternatives

- Option 1: page flipping
 - · NIC places payloads in aligned memory; OS uses virtual memory to map it where the app wants it.
- Option 2: scatter/gather API
 - · NIC puts the data wherever it want; app accepts the data wherever it lands.
- Option 3: direct data placement
 - · NIC puts data where the headers say it should go.

Each solution involves the OS, application, and NIC to some degree.


Page Flipping: Pros and Cons

- · Pro: sometimes works.
 - Application buffers must match transport alignment.
- NIC must split headers and coalesce payloads to fill aligned buffer pages.
- NIC must recognize and separate ULP headers as well as transport headers.
- · Page remap requires TLB shootdown for SMPs.
 - Cost/overhead scales with number of processors.

Option 2: Scatter/Gather System and apps see data as arbitrary scatter/gather buffer chains (readonly). Deposit data anywhere in buffer pool for recipient. Fbufs and IO-Lite [Rice]

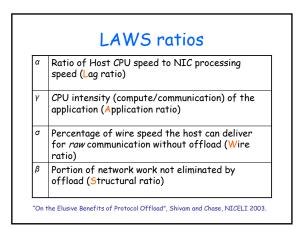
Scatter/Gather: Pros and Cons

- · Pro: just might work.
- · New APIs
- New applications
- · New NICs
- · New OS
- · May not meet app alignment constraints.

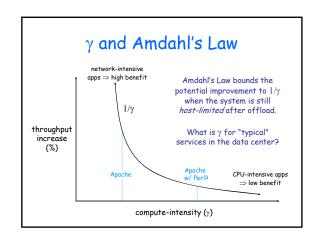
DDP: Pros and Cons

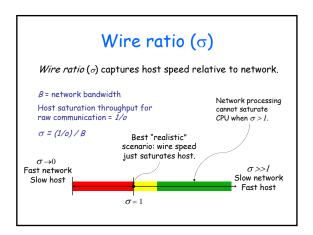
- <u>Effective</u>: deposits payloads directly in designated receive buffers, without copying or flipping.
- <u>General</u>: works independent of MTU, page size, buffer alignment, presence of ULP headers, etc.
- <u>Low-impact</u>: if the NIC is "magic", DDP is compatible with existing apps, APIs, ULPs, and OS.
- · Of course, there are no magic NICs...

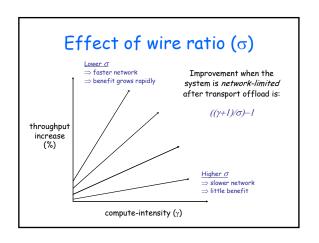
DDP: Examples

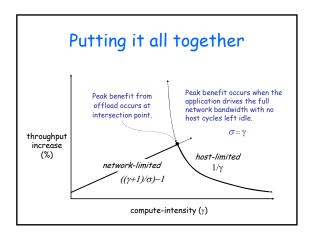

- TCP Offload Engines (TOE) can steer payloads directly to preposted buffers.
 - Similar to page flipping ("pack" each flow into buffers)
- Relies on preposting, doesn't work for ULPs
- ULP-specific NICs (e.g., iSCSI)
 - Proliferation of special-purpose NICs
- Expensive for future ULPs
- <u>RDMA</u> on non-IP networks
 VIA, Infiniband, ServerNet, etc.

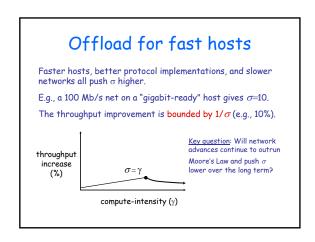
Remote Direct Memory
Access

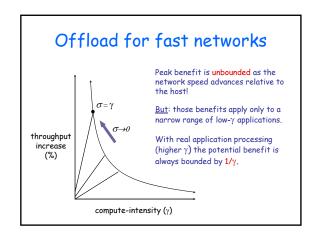

Register buffer steering tags * with
NIC, pass them to remote peer.

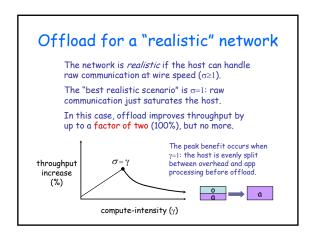

RDMA-like
transport shim
carries directives
and steering tags
in data stream.

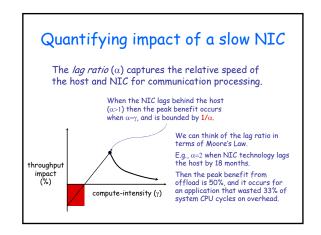

Directives and steering
tags guide NIC data
placement.

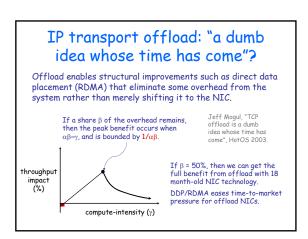


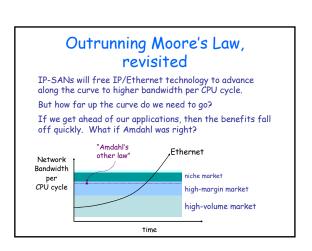

Application ratio (γ) Application ratio (γ) captures "compute-intensity". $\gamma = a/o$ For a given application, lower overhead increases γ . For a given communication system, γ is a property of the application: it captures processing per unit of bandwidth.











Pitfall: offload to a slow NIC If the NIC is too slow, it may limit throughput when γ is low. The slow NIC has no impact on throughput unless it saturates, but offload may do more harm than good for low- γ applications. throughput impact (%)

Conclusion

- To understand the role of 10+GE and IP-SAN in the data center, we must understand the applications (γ).
- · "Lies, damn lies, and point studies."
 - Careful selection of γ and σ can yield arbitrarily large benefits from SAN technology, but those benefits may be elusive in practice.
- LAWS analysis exposes fundamental opportunities and limitations of IP-SANs and other approaches to low-overhead I/O (including non-IP SANs).
- · Helps guide development, evaluation, and deployment.