Multicast and Scribe

Jeff Chase
Duke University
(Thanks to Adolfo Rodriguez and Ben Zhao)

i

Multicast Trees

The basic idea

Multiple unicasts Single multicas

Rodriguez

Applications that need
multicast

+ One way, single sender: “one-to-many"”
- TV - streaming apps (NCAA games)
- Non-interactive learning

- Database update

- Information dissemination

+ Two way, interactive, multiple sender: “many-to-many"”
- Teleconference
- Interactive learning

Rodriguez

Multicast Routing

+ Naive approach: flooding (controlled broadcast)

+ Better: form a spanning free with the sender at the
root, spanning all the members of a multicast group.

Rodriguez

Multicast Trees

e.g. a teleconference

Sender/Speaker
Multicast Group (5,6)
=

Rodriguez

Multicast Trees

Multiple source trees

=5
Sender/Speaker
Multicast Group (S,6)

Rodriguez

Multicast Forwarding is
Sender-specific

Group Src Src Dst
Address| Address| Interface|Interface

s, | 1 [23
S, | 2 |13

@
(N .

Rodriguez

Distance-vector Multicast
RPB: Reverse-Path Broadcast

+ Uses existing unicast shortest path routing table.

+ If packet arrived through interface that is the
shortest path to the packet's SA, then forward
packet to all interfaces.

+ Else drop packet.

Rodriguez

Distance-vector Multicast
RPB: Reverse-Path Broadcast

. Address| Port Sender/Speaker
Unicast T : Multicast Group (S,,6)
DV Routing |_* :

Table| S,

Shortest Path to
Source

Q: Is it shortest path
from source?

Rodriguez

Distance-vector Multicast
RPB: Reverse-Path Broadcast

Sender/Speaker
@ Multicast Group (S,6)
Ced

Designated Parent
Router:

One parent router

picked per LAN (one

“closest" to source).

Rodriguez

Distance-vector Multicast
RPM: Reverse-Path Multicast

+ RPM = RPB + Prune

+ RPB used when a source starts to send o a hew group
address.

+ Routers that are not interested in a group send prune
messages up the tree towards source.

* Prunes sent implicitly by not indicating interest ina
group.
+ DVMRP works this way.

Rodriguez

IP Multicast: Trees and
Addressing

+ All members of the group share the same “Class
D" Group Address.

+ An end-station "joins" a multicast group by
(periodically) telling its nearest router that it
wishes to join (uses IGMP - Internet Group
Management Protocol).

- An end station may join multiple groups.

+ Routers maintain "soft state” indicating which
end-stations have subscribed to which groups.

+ IGMP itself does not deal with the multicast
routing problem.

- DVMRP, PIM

Rodriguez

Link State Multicast

+ MOSPF (Multicast OSPF)
+ Use IGMP to determine LAN members

+ Flood topology/group changes

+ Each router gets complete topology, group
membership

- Compute shortest path spanning tree

- Recompute tree every time topology changes
- Add/delete links if membership changes

+ Scalability concerns similar to OSPF

- Overhead of flooding

Rodriguez

Protocol Independent
Multicast

+ PIM-DM (Dense Mode) uses RPM.
+ PIM-SM (Sparse Mode) designed to be more

efficient that DVMRP.

- Routers explicitly join multicast tree by sending
unicast Join and Prune messages.
- Routers join a multicast tree via a RP (rendezvous
point) for each group.
- Several RPs per domain (picked in a complex way).
- Provides either:
+ Shared tree for all senders (default).
+ Source-specific free.

Rodriguez

Multicast: Issues

- How to make multicast reliable?

+ What service model, e.g., delivery ordering?
- Much work in group communication (CATOCS)
+ How to implement flow control?

+ How to support/provide different rates for different
end users?

- How to secure a multicast conversation?
- What does end-to-end mean here?

+ Will IP multicast become widespread?

The End-to-end Challenge

+ Keep the network simple & robust

+ Rely upon end-to-end adaptation

+ Layer reliability on top of IP multicast..or not
+ Unlike TCP, RM has to cope with

- Scale
- Heterogeneity among receivers

+ Been trying for a decade

- This is a HARD problem

Rodriguez/S. Deering

Application-Layer Multicast

+ IP multicast is not enough.

- Inter-domain multicast routing not widely deployed.

- Topology-aware, but not reliable.
- No success in deploying Reliable Internet Multicast

+ Interest in overlay multicast began with Hui
Zhang@CMU, and a few others, in late 1990s.

- Conference telecasts, etc.
- Now dozens of papers

+ Several deployed systems and broadcast/multicast
services offered by CDNs.

. Sin?Ie-source, multi-source, meshes, speed
differences, reliability, resource management, etc.

+ How to structure the overlay?

Scribe

+ Scribe is a scalable application-level multicast

infrastructure built on top of Pastry

+ Provides topic based publish-subscribe service.

- Provides best-effort delivery of multicast
messages

- Fully decentralized

- Supports large number of groups

- Supports groups with a wide range of size
High rate of membership turnover (churn?)

APT's for Scribe

Pastry's API Scribe's APT
Pastry exports + Create(credentials, topicId)

- Route(msg, key) + Subscribe(credentials,

- Send(msg, IPAddr) topicId, evtHandler)
Application's build on Pastry ~ * Unsubscribe(credentials,
must exports topicId)

- Deliver(msg, key) + Publish(credentials, topicId,

- Forward(msg, key, nextid) event)

Rodriguez

Scribe APT

create (credentials, group-id)

- create a group with the group-id
« Join (credentials, group-id, message-handler)

- join a group with group-id.

- Published messages for the group are passed to the

message handler

« leave (credentials, group-id)

- leave a group with group-id
« multicast (credentials, group-id, message)

- publish the message within the group with group-id
credentials are used throughout for access control.

Rodriguez

The Pastry API

+ Operations exported by Pastry
- nodeld = pastryInit(Credentials,Application)
- route(msg key)
+ Operations exported by the application working above
Pastry
- deliver(msg key)
- forward(msg,key,nextId)
- newlLeafs(leaf Set)

Rodriguez

Scribe on Pastry

Use Pastry to manage topic/group creation,
subscription, and to build a per-topic multicast tree
used to disseminate the events published in the topic.

* topicId = hash(topic hame + creator name). Hash

function should be collision resistant. E.g., SHA-1

Each topic will have a rendezvous point, which is a
node with nodeid closest to the topicId.

- Replicate across the leaf set

+ Multicast tree is rooted at the rendezvous point.

- Union of all Pastry/DHT paths from group
members to the rendezvous point.

- Do DHT/Pastry proximity heuristics result in an
efficient multicast tree?

Pastry

Routes based on 'digits’

+ Similar to Chord, CAN, and Tapestry

+ Each hop takes you one digit closer to your
destination

+ Improves on locality by finding the ‘closest’ node to
you with the same prefix

+ Number of nodes from which decreases exponentially
as you get closers to the destination

Pastry: Properties

NodeIdrandomly assigned from
{0, .., 2128-1)
b, |L| are configuration parameters

Under normal conditions:

1. A pastry node can route to the numerically closest
node to a given key in less than log,» Nsteps

2. Despite concurrent node failures, delivery is
guaranteed unless more than /L//2 nodes with
adjacent NodeIds fail simultaneously

3. Each node join triggers O(/log, N) messages

Rodriguez

Pastry Node State

Leaf set [Ewiir | mas Set of nodes with |L|/2
10233033 | 10233021 _| 10233120][2_ | smaller and |L|/2 larger
10235001 [10555000 | 102355550 numerically closest Nodelds|

|Rauting table

L -0.-221H02 |_-2-2301 203 3. 1203303 |

(N 11201235 || 1.2-230003 | 1-3-021022 |
203 10323302

Prefix-based routing

1 .
10230522 | 10231000)| 10232121 || | EnUries
1 7] |

IM] “physically” closest
nodes

Rodriguez

Pastry: Routing Table

+ NodeIdsare in base 2¢

+ Several rows - one for each prefix of local NodeId
(Logzs N populated on average)

+ 2b-1 columns - one for each possible digit in the
NodeId representation

b defines the tradeoff:
(Log,b N) x (2° - 1) entries Vs. Log,b N routing hops

Rodriguez

Pastry Proximity

- Application provides the “distance” function

+ Invariant: “All routing table entries refer to a node
that is near the present node, according to the
proximity metric, among all live nodes with an
appropriate prefix”

+ Invariant maintained on self-organization

Rodriguez

Messaging Distance

Ny
r— -
PR e~ W = Taal - = 2 i
.
f12
]
-
1
® |
g T T
B | [Pasuy
» L
- Comasete routing tatie
08 1 IR
1000 10000 100000

Number of nodes

b=4; |L|=16; |M|=32; 200,000 lookups; Random end points

Rodriguez

Quality of Routing Tables

5
we

Fhel
i

Li |

Mumsarof aniries in routing ke
IITTTTTTTTITTTTITT

s [wr [wre
Leves3

s [wr [wie

Levsiz

b=4; |L|=16; |M|=32; 5000 New Nodes

s | wr [wee

Level 1

s [wr [wee

Lewio

Rodriguez

Scribe Node

A Scribe node
- May create a group
- May join a group
- May be the root of a multicast tree
- May act as a multicast source

B. Zhao

Scribe messages

+ Scribe messages
- CREATE
* create a group
- JOIN
+ join a group
- LEAVE
* leave a group
- MULTICAST
* publish a message to the group

B. Zhao

Scribe Group

+ A Scribe group

- Has a unique group-id

- Has a multicast tree associated with it for
dissemination of messages

- Has a rendezvous point which is the root of the
multicast free

- May have multiple sources of multicast messages

B. Zhao

Scribe Multicast Tree

+ Scribe creates a per-group multicast tree rooted at the
rendezvous point for message dissemination
+ Nodes in a multicast tree can be
- Forwarders
* Non-members that forward messages
* Maintain a children table for a group which contains
IP address and corresponding node-id of children
- Members
* They act as forwarders and are also members of the
group

B. Zhao

Create Group

+ Create Group

- Scribe node sends a CREATE message with the
group-id as the key

- Pastry delivers the message to the node with node-
id numerically closest to group-id, using de/iver
method

- This node becomes the rendezvous point

- deliver method checks and stores credentials and
also updates the list of groups

B. Zhao

GroupID

+ Is the hash of the group’s textual name concatenated

with its creator's name

*+ Making creator the Rendez-Vous point

- Pastry nodeID be the hash of the textual name of
the node and a groupID can be the concatenation
of the nodeID of the creator and the hash of the
textual name of the group

* They claim this improves performance with good

choice of creator

B. Zhao

Join Group

+ Join Group

- Scribe node sends a JOIN message with the group-id as
the key
- Pastry routes this message to the rendezvous point using
forward method
+ If an intermediate node is already a
forwarder
- adds the hode as a child
« If an intermediate node is not a forwarder
- creates a child table for the group, and adds the
node
- sends a JOIN towards the rendezvous point.
* terminates the JOIN message from the child
B. Zhao

Join group

new node

o)

oo Ym0 i o)

root new node

B. Zhao

Leave Group

+ Leave Group
- Scribe node records locally that it left the group

- If the node has no children in its table, it sends a
LEAVE message to its parent

* The message travels recursively up the
multicast tree

+ The message stops at a node which has children
after removing the departing node

B. Zhao

(1) forward(msg, key, nextID)

@) switch msg.type is

3) JOIN: if I(msg.group in groups)

“) group = groups U msg.group

(5) route(msg,msg.group)

(6) groups[msg.group].children U msg.source

@) nextId = null // Stop routing original message

(1) deliver(msg, key)

@) switch msg.type is

3) CREATE: groups = groups U msg.group

“ JOIN: groups[msg.group].children U msg.source

(5) MULTICAST: V¥ node in groups[msg.group].children

(6) sena(msg, node)

(@] if memberOf(msg.group)

(8) invokeMsgHandler(msg.group, msg)
) LEAVE: groups[msg.group].children -= msg.source
(10) if (Igroups[msg.group].children| = 0)

1) send(msg.groups[msg.group].parent

B. Zhao

Multicast Message

Multicast a message to the group

- Scribe node sends MULTICAST message to the rendezvous
point
A node caches the IP address of the rendezvous point so that
it does not need Pastry for subsequent messages
Single multicast tree for each group

Access control for a message is performed at the rendezvous
point

B. Zhao

Multicast message

— member

() Com)

(1100 ——(1101
root 1001H11D
T me;ri)ér

B. Zhao

Multicast Tree Repair I

+ Broken link detection and repair
- Non-leaf nodes send heartbeat message to children
- Multicast messages serve as implicit heartbeat
- If child does not receive heartbeat message
+ assumes that the parent has failed

- finds a new route by sending a JOIN message to
the group-id, thus finding a new parent and
repairing the multicast tree

B. Zhao

Multicast Tree Repair

K AN (o1oo>
K . 2
’ N
’ N
/ .
/ Y
4 N
N
J N
I . N
(1100)——(12() N o
root 1001 >—(0111 D
B. Zhao

Reliablity

Non-leaf nodes in the tree sends HeartBeat (HB) msgs to its
children.

If a node fails to receive HB msgs, it routes a (SUBSCRIBE,
topicId) msg and attach to a new parent.

Avoid root failure by replicating the topicId across k closest
nodes to the root node in the nodeid space.

Children table entries are discarded unless refresh msgs
received from children periodically.

Scribe provides best-effort service, events may be out of
order. Reliable services can be built on top of Scribe.

B. Zhao

Multicast Tree Repair IT

+ Rendezvous point failure
- The state associated with a rendezvous point is
replicated across A closest nodes
- When the root fails, the children detect the
failure and send a JOIN message which gets
routed to a new node-id numerically closest to
the group-id

+ Fault detection and recovery is local and
accomplished by sending minimal messages

B. Zhao

Stronger Reliability

Scribe provides reliable, ordered delivery only if
there are no faults in the multicast free
Scribe provides a mechanism to implement stronger
reliability
- Applications built on top of Scribe should provide
implementation of certain upcall methods to
implement stronger reliability...

B. Zhao

Reliability APT

forwardHandler(msg)
- invoked by Scribe before the node forwards a multicast
message to its children
JoinHandller(JOINmsg)
- invoked by Scribe after a new child has been added to one
of the node's children tables
faultHandler(JOINmsg)
- ;:nvc;ked by Scribe when a node suspects that its parent is
aulty

The messages can be modified or buffered in these handlers to implement
reliability

B. Zhao

Example, Reliable delivery

forwardHandler
- Root assigns a sequence number to each message, such that
messages are buffered by root and nodes in multicast tree
faultHandler
- Adds the last sequence number, 7, delivered by the node to
the JOIN message
JoinHand/ler
- Retfransmits buffered messages with sequence numbers
above 71to new child

Messages must be buffered for an amount of time that exceeds the
maximal time to repair the multicast tree after a TCP connection
breaks.

B. Zhao

Scribe Results

Experiments
- Compare the delay, node and link load with IP multicast
- Scalability test with large number of small groups

Setup
- Network topology with 5050 routers GaTech random
graph generator using transit-stub model
- Number of scribe nodes: 100,000
- Number of groups: 1500
- Group Size: minimum 11 maximum 100,000

B. Zhao

Methodological Issues

Simulation via their own packet-level simulator
Only considers propagation delay

Does not take into account queuing delay or packet
losses!

100,000 nodes!

Created 1,500 with very varied group sizes

Rodriguez

Delay Penalty

Delay Penalty
- Measured the distribution of delays to deliver a message to each
member of a group using both Scribe and IP multicast

- Measure Ratio of Average Delay (RAD)
+ 50% groups 1.68
* max: 2
- Measure Ratio of Maximum Delay (RMD)
+ 50% of groups: 1.69
* Max: 4.26

The message delivery delay is more in Scribe compared to IP Multicast
- Only in 2.2% of groups it is lower

B. Zhao

Delay Penalty

[F

:

—RMD

g

Cumulalive Groups
-
|
=
B

/
L]

L] 1 2 L 4 5
Delay Penally

@
5

Cumulative distribution delay penalty relative to IP multicast per group
(standard deviation was 62 for RAD and 21 for RMD)

Node Stress

Node Stress
- Measure the number of groups with non-empty children
tables for each node
- Measure the number of entries in the children table in
each hode
The mean number of non-empty children tables per node
is only 2.4 although there are 1500 groups, median is 2
Results indicate Scribe does a good job of partitioning and
distributing the load. This is one of the factors that ensures
scalability.

Node Stress I

5 0 1% o0 25) a5 40
Husnber of Chilcren Tables

Number of children pre Scribe node
(average standard deviation was 58)

HNumber of Nodes

Node Stress IT

Number of Nodes

000 — ff_{J 200 350 500 850 00 60 l*.l)
Tetal NMumber of Children Table Entries l
¥

0 W0 200 M0 400 SN0 600 TOO 600 SO0 1000 10
Total Mumber of Children Table Entries

Number of table entries per Scribe node
(average standard deviation was 3.2)

Link Stress

Link Stress
- Measure the number of packets that are sent over each link
when a message is multicast to each of the 1500 groups

Measured mean number of messages per link
+ Scribe : 2.4
+ IP Multicast : 0.7
Maximum link stress
+ Scribe: 4031
+ IP multicast: 950
Scribe Link stress = 4 x IP Multicast Stress

Humber of Links

Link Stress

100 1000 10000
Link Stress

Link stress for multicasting a message to each of 1,500 groups
(average standard deviation was 1.4 for Scribe and 1.9 for IP multicast)

Bottleneck Remover

All nodes may not have equal capacity in terms of
computational power and bandwidth
Under high load conditions, the lower capacity nodes become
bottlenecks
Solution: Offload children to other nodes
- Choose the group that uses the most resources
- Choose a child of this group that is farthest away
- Ask the child to join its sibling which is closest in terms
of delay
This gives an improved performance
Increases link stress for joining

Bottleneck Remover

|
§ 15000 4
= ‘ !I
T 10000 1
i ‘ \
E 5000 + "'._
ol ——
o 10 20 30 40 60 70

0
Total Number of Children Table Entries

Number of children table entries per Scribe node with the bottleneck remover
(average standard deviation was 57)

Scalability Test

Scalability test with many small groups
- 30000 groups with 11 members
- 50000 groups with 11 members

Scribe Multicast Trees are not efficient for small groups because it
creates trees with long paths with no branching

Scribe Collapse algorithm
- Collapses paths by removing nodes
* not members of the group
+ only have one entry in the group’s children table
- Reduce average link stress from 6.1 fo 3.3, average number of
children per riode from 21.2 to 8.5

10

