
Transports and TCPTransports and TCP

Adolfo Rodriguez
CPS 214

HostHost--toto--Host vs.Host vs.
ProcessProcess--toto--Process CommunicationProcess Communication

Until now, we have focused on delivering packets between
arbitrary hosts connected to Internet
• Routing protocols
• IP best effort delivery model
• Scalability and robustness through hierarchy and soft state

Transition to arbitrary processes communicating together
• One goal: provide illusion that all processes located on one

large computer
• Can address (name) and reliably communicate with any

process
Ports

UDPUDP

User Datagram Protocol (UDP)
• Simple demultiplexing

No guarantees about reliability, in-order delivery

• Thin veneer on top of IP adds src/dest port numbers
16 bit port number allows for identification of 65536 unique

communication endpoints per host

Note that a single process can utilize multiple ports

IP addr + port number uniquely identifies all Internet endpoints

• UDP Packet

Link-layer IP SrcPort DestPort Checksum Len Data…

UDP Header

A Brief Internet HistoryA Brief Internet History

1970 1975 1980 1985 1990 1995

1969
ARPANET

created

1972
TELNET

RFC 318

1973
FTP

RFC 454

1982
TCP & IP
RFC 793 & 791

1977
MAIL
RFC 733

1984
DNS

RFC 883

1986
NNTP
RFC 977

1990
ARPANET

dissolved

1991
WWW/HTTP

1992
MBONE

1995
Multi-backbone

Internet

TCP TimelineTCP Timeline

1975 1980 1985 1990

1982
TCP & IP
RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead
of small packets;

predicts congestion
collapse

1987
Karn’s

algorithm
to better estimate
round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance

and congestion
control

(most implemented
in 4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

TCP: After 1990TCP: After 1990

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
real congestion

avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

Improving TCP
startup

1996
FACK TCP
(Mathis et al)

extension to SACK

Interaction of real-time
protocols with TCP?

XCP…

1999

TCPTCP

Transmission Control Protocol (TCP)
• Reliable in-order delivery of byte stream
• Full duplex (endpoints simultaneously send/receive)

e.g., single socket for web browser talking to web server

• Flow-control
To ensure that sender does not overrun receiver

Fast server talking to slow client

• Congestion control
Keep the sender from overrunning the network

Many simultaneous connections across routers (cross traffic)

TCPTCP

Utilize sliding window protocol, plus:
• Need for connection establishment (no dedicated cable)
• Varying round trip times over life of connection

Different paths, different levels of congestion

• Ready for very old packets
• Delay-bandwidth product highly variable

Amount of available buffer space at receivers also variable

• Sender has no idea what links will be traversed to receiver
Must dynamically estimate changing end-to-end characteristics

TCP FlavorsTCP Flavors

TCP Tahoe
• Jacobson’s implementation of congestion control (AIMD)

TCP Reno
• Fast recovery
• Fast retransmit
• Delayed ACK’s

TCP Vegas
• Source-based congestion avoidance rather than control
• TCP Reno needs to cause congestion to determine available

bandwidth

TCP Header FormatTCP Header Format

SrcPort DestPort

SequenceNum

Acknowledgment

HdrLen AdvertisedWindowFlags0

CheckSum UrgPtr

Options (variable)

Data

0 4 10 16 31

Without options, TCP header 20 bytes
• Thus, typical Internet packet minimum of 40 bytes

TCP Connection EstablishmentTCP Connection Establishment

Exchange necessary information to begin communication
Three-way handshake
• E.g., server listening on socket

Client Server
SYN, sequence # = x

ACK, Acknowledgement=y+1

SYN+ACK, Sequence #=y

Acknowledgment=x+1

TCP Connection TeardownTCP Connection Teardown

Closing process sends a FIN message
• Waits for ACK of FIN to come back
• This side of the connection is now closed

Each side of a TCP connection can independently close the
connection
• Thus, possible to have a half duplex connection

Reliable TransmissionReliable Transmission

How do we send a packet reliably when it can be lost?
Two mechanisms
• Acknowledgements
• Timeouts

Simplest reliable protocol: Stop and Wait

Stop and WaitStop and Wait

Time
Packet

ACK

Ti
m

eo
ut

Send a packet, stop and wait until acknowledgement arrives

Sender Receiver

Recovering From ErrorRecovering From Error

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
utTi

m
e

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

ACK lost Packet lost Early timeout

Problems with Stop and WaitProblems with Stop and Wait

How to recognize a duplicate transmission?
• Solution: put sequence number in packet

Performance
• Unless Latency-Bandwidth product is very small, sender

cannot fill the pipe
• Solution: sliding window protocols

Keeping the Pipe FullKeeping the Pipe Full

Bandwidth-Delay product measures network capacity
How much data can you put into the network before the
first byte reaches receiver
Stop and Wait: 1 data packet per RTT
• Ex. 1.5-Mbps link with 45-ms RTT
• Stop-and-wait: 182 Kbps

Ideally, send enough packets to fill the pipe before
requiring first ACK

Bandwidth

Latency

How Do We Keep the Pipe Full?How Do We Keep the Pipe Full?

Send multiple packets without waiting for
first to be ACK’d
Reliable, unordered delivery:
• Send new packet after each ACK
• Sender keeps list of unack’d packets; resends

after timeout

Ideally, first ACK arrives immediately after
pipe is filled
• Opens up another “slot”

TCP Flow ControlTCP Flow Control

TCP is a sliding window protocol
• For window size n, can send up to n bytes without receiving

an acknowledgement
• When the data is acknowledged then the window slides

forward

Each packet advertises a window size in TCP header
• Indicates number of bytes the receiver is willing to get

Original TCP always sent entire window immediately
• Too bursty?

Sliding WindowSliding Window

Receivers buffer later packets until prior packets arrive
• For out of order delivery

Sender must prevent buffer overflow at receiver
• Flow control

Solution: sliding window
• Circular buffer at sender and receiver

Packets in transit <= buffer size

Advance when sender and receiver agree packets at beginning
have been received

Visualizing the WindowVisualizing the Window

4 5 6 7 8 91 2 3 10 11 12

offered window
(advertised by receiver)

usable window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Left side of window advances when data is acknowledged.
Right side controlled by size of window advertisement.

Visualizing the Window: ExampleVisualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Initial State, Receiver has 6 slots to buffer packets
Packets 4, 5, 6 sent, but not yet received

4 5 6 7 8 91 2 3 10 11 12

offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

Visualizing the Window: ExampleVisualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and
acknowledged

sent, not ACKed

can send ASAP
can’t send until
window moves

Receiver to Sender ACK 5, Window 4

4 5 6 7 8 91 2 3 10 11 12
offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

ACK’d, not read

Visualizing the Window: ExampleVisualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window

sent and
acknowledged sent, not ACKed

can’t send until
window moves

Sender to Receiver Send 7, 8, 9

4 5 6 7 8 91 2 3 10 11 12
offered window

ACK’d and
read

Available bufs
can’t recv until
window moves

Sender

Receiver

ACK’d, not read

Visualizing the Window: ExampleVisualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and
acknowledged can’t send until

window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read can’t recv until
window moves

Sender

Receiver

ACK’d, not read

offered window=0

Receiver to Sender ACK 9, Window 0

Visualizing the Window: ExampleVisualizing the Window: Example

4 5 6 7 8 91 2 3 10 11 12

advertised window=0

sent and
acknowledged can’t send until

window moves

4 5 6 7 8 91 2 3 10 11 12
ACK’d and

read

Sender

Receiver

ACK’d, not read

offered window=3

Available bufs

Receiver App reads packets 4, 5, 6
But sender has no way of knowing that more room is available!

Options for Sender Discovery of IncreasedOptions for Sender Discovery of Increased
Advertised WindowAdvertised Window

Receiver sends duplicate ACK with a larger advertised
window
• Complicates receiver design
• TCP design philosophy: keep receiver simple

Also explains slow deployment of SACK, NACK, etc.

Sender periodically transmits a 1-byte packet
• If no space available at receiver packet dropped, no ACK
• If additional space became available ACK contains new

advertised window

NOTE: advertised window in bytes, not packets

Sequence NumbersSequence Numbers

TCP uses 32-bit sequence number
• TCP assumes that packet will not live in Internet for > 1 min
• On 622 Mbps link, can wrap 32-bit sequence number in 55

seconds
Gbps links becoming common

• Why is this a problem?

Sequence NumbersSequence Numbers

TCP uses 32-bit sequence number
• TCP assumes that packet will not live in Internet for > 1 min
• On 622 Mbps link, can wrap 32-bit sequence number in 55

seconds
Gbps links becoming common

• Proposal: extend sequence number with timestamp to
distinguish between old and new incarnations of packets

Advertised WindowAdvertised Window

TCP uses a 16-bit advertised window field (flow control)
• Specifies number of bytes that can be sent from sender to

receiver
• Recall “keeping pipe full” to obtain available bandwidth
• 16-bit field translates to max 64KB advertised window
• For 100 ms RTT T3 link (45 Mbps), delay-bandwidth

product is 549 KB
Advertised window not large enough to keep pipe full

Poor bandwidth utilization

Advertised WindowAdvertised Window

TCP uses a 16-bit advertised window field (flow control)
• Specifies number of bytes that can be sent from sender to

receiver
• Recall “keeping pipe full” to obtain available bandwidth
• 16-bit field translates to max 64KB advertised window
• For 100 ms RTT T3 link (45 Mbps), delay-bandwidth

product is 549 KB
Advertised window not large enough to keep pipe full

Poor bandwidth utilization

• Proposal: advertised window specifies chunks larger than
byte granularity

Adaptive Retransmission forAdaptive Retransmission for
Reliable DeliveryReliable Delivery

TCP retransmits packet if ACK not received within
timeout period
• Necessary for reliability on top of “best-effort” IP

Round trip time varies with congestion, route changes, …
• If timeout too small, useless retransmits
• If timeout too big, low utilization

TCP: estimate RTT by timing ACKs
• Exponential weighted moving average
• Factor in RTT variability

RetransmissionRetransmission

How long a timeout to set?
Original TCP: Estimate round-trip time R
• R = αR + (1- α)M
• α is a smoothing factor of 0.9

Places much more weight on historical result

Smooth out outlying measurements

• M is measured round-trip time (ACK’s to data)

Timeout at Rβ, where β is a delay variance factor of 2.0
• Conservative: do not retransmit until two RTT’s have passed

Jacobson’s TCP modifications allows for varying β

Retransmission AmbiguityRetransmission Ambiguity

How do we distinguish first ACK from
retransmitted ACK?
• First send to first ACK

What if ACK dropped?

• Last send to last ACK
What if last ACK dropped?

Timeout!

Which
RTT??

Retransmission Ambiguity: SolutionsRetransmission Ambiguity: Solutions

TCP: Karn-Partridge
• Ignore RTT estimates for retransmitted packets
• Double timeout on every retransmission

Exponential backoff similar to Ethernet for congestion avoidance

Add sequence #’s to retransmissions (retry #1, retry #2)
TCP proposal: Add timestamp into packet header; ACK
returns timestamp

JacobsonJacobson’’s RTT estimators RTT estimator

Problem:
• Originial TCP does not adapt to wide variance in RTT
• Uses fixed β of 2.0

Need to account for both estimate RTT and variance
Jacobson:
• Low variance estimate RTT sufficient
• High variance estimate RTT could be far off

Solution:
• Timeout = μ*EstimateRTT + φ*Deviation
• μ=1, φ=4

Can We Shortcut Timeout?Can We Shortcut Timeout?

If packets usually arrive in order, out of order signals a drop
• Negative ACK (NACK)

Receiver requests missing packet

• Selective ACK (SACK)
Receiver describes state of receive window

• Fast retransmit
Sender detects missing ACK from multiple duplicate ACKs

Recall: receiver ACKs highest sequence # received in order

Triple duplicate ACKs for fast retransmission (shortcut timeout)

How is retransmission timer related to congestion control?

Transport Protocol SummaryTransport Protocol Summary

TCP designed to connect arbitrary hosts on the Internet
• Difficult to determine link characteristics
• Difficult to determine receiving host characteristics
• Both host/network characteristics change over time

Network becomes more congested larger RTT

Receiving becomes overloaded smaller advertised window

TCP provides
• Reliable, in-order delivery of byte stream
• Flow control
• Congestion control

Silly Window SyndromeSilly Window Syndrome
Problem: (Clark, 1982)
• If receiver advertises small increases in the receive window

then the sender may waste time sending lots of small packets
e.g., application reads small number of bytes, freeing up small

amount of kernel buffer space

Solution:
• Receiver must not advertise small window increases

NagelNagel’’s algorithm (selfs algorithm (self--clocking)clocking)

Small packet problem:
• Don’t want to send a 41 byte packet for each keystroke

IP 20 bytes, TCP 20 bytes, keystroke 1 byte

• How long should OS/app buffer keystrokes?

Solution:
• Only one outstanding small segment not yet ACK’d

e.g., telnet cannot echo last character until ACK’d anyway

Can turn of with TCP_NODELAY option
• What’s the story with these options anyway?

