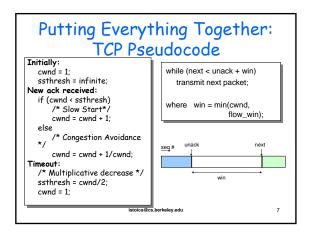
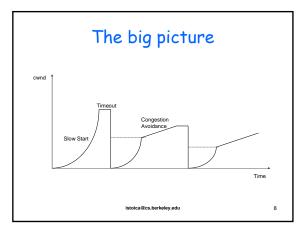
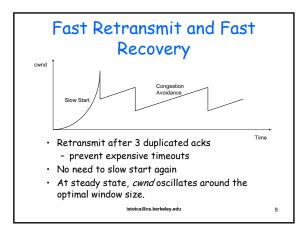
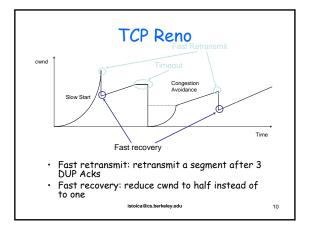
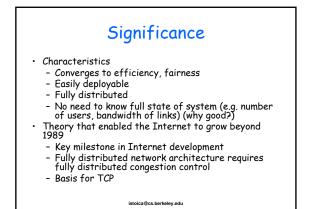

Overview

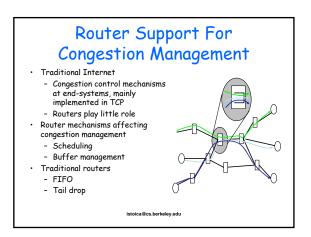

- · Problem is "Bullies, Mobs, and Crooks" [Floyd]
- · AQM / RED / REM
- · ECN
- $\cdot\,$ Robust Congestion Signaling
- XCP
- Pushback

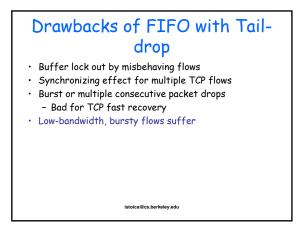


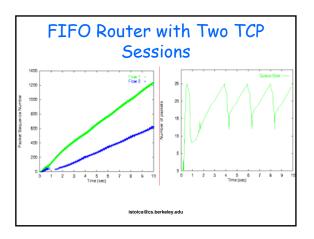


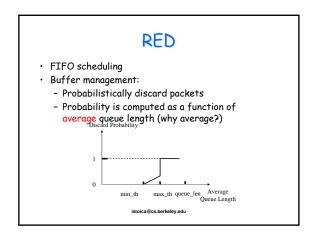


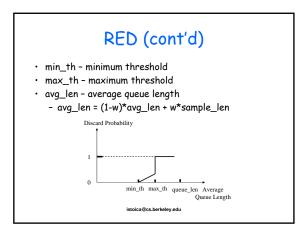


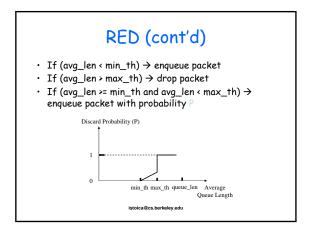

- When TCP congestion control was originally designed in 1988:
 - Key applications: FTP, E-mail
 - Maximum link bandwidth: 10Mb/s
 - Users were mostly from academic and government organizations (i.e., well-behaved)
 - Almost all links were wired (i.e., negligible error rate)
- Thus, current problems with TCP:
- High bandwidth-delay product paths
- Selfish users
- Wireless (or any high error links) istoica@cs.berkeley.edu

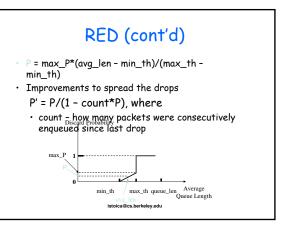

Reflections on TCP

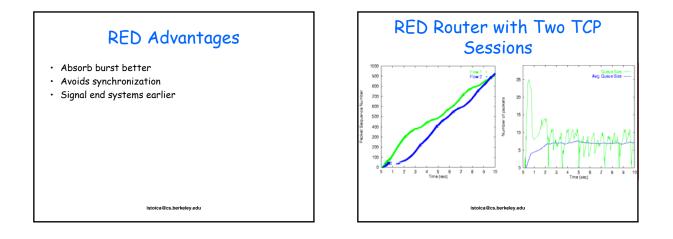

- Assumes that all sources cooperate
- Assumes that congestion occurs on time scales greater than 1 RTT
- Only useful for reliable, in order delivery, non-real time applications
- Vulnerable to non-congestion related loss (e.g. wireless)

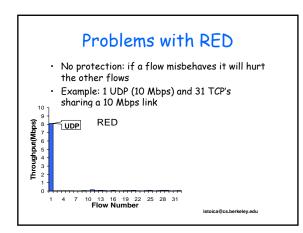

stoica@cs.berkeley.edu

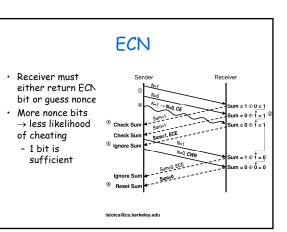

• Can be unfair to long RTT flows










.

ECN

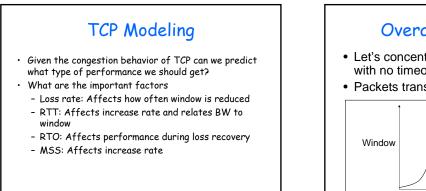
- Explicit Congestion Notification
 Router sets bit for congestion
 - Receiver should copy bit from packet to ack
 - Sender reduces cwnd when it receives ack
- Problem: Receiver can clear ECN bit
- Or increase XCP feedback
- Solution: Multiple unmarked packet states
 - Sender uses multiple unmarked packet statesRouter sets ECN mark, clearing original unmarked
 - state - Receiver returns packet state in ack
 - istoica@cs.berkeley.edu

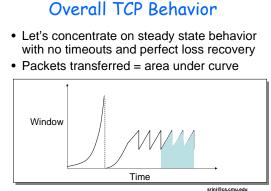
Selfish Users Summary

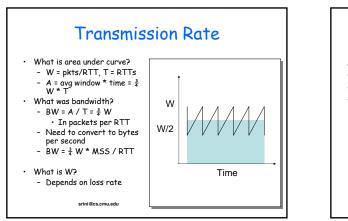
- TCP allows selfish users to subvert congestion control
- Adding a nonce solves problem efficiently
 must modify sender and receiver
- Many other protocols not designed with selfish users in mind, allow selfish users to lower overall system efficiency and/or fairness
 e.g., BGP

ica@cs.berkeley.edu

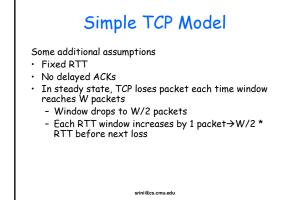
Slides from srini@cs.cmu.edu

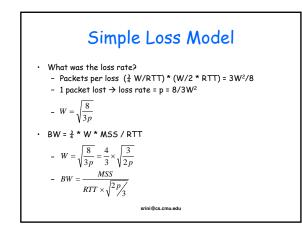

TCP Performance

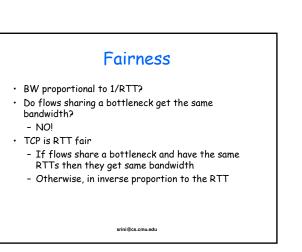

- Can TCP saturate a link?
- Congestion control
 - Increase utilization until... link becomes congested
 - React by decreasing window by 50%
 - Window is proportional to rate * RTT
- Doesn't this mean that the network oscillates between 50 and 100% utilization?
 - Average utilization = 75%??
 - No...this is *not* right!

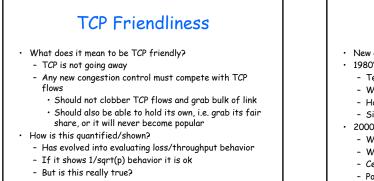

srini@cs.cmu.edu

TCP Performance

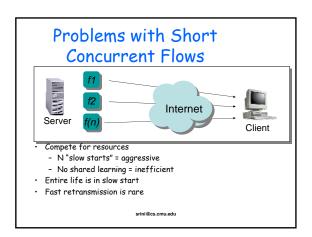

- If we have a large router queue \rightarrow can get 100% utilization
 - <u>But, router queues can cause large delays</u>
 - How big does the queue need to be?
 - Windows vary from W \rightarrow W/2
 - Must make sure that link is always full
 - W/2 > RTT * BW
 - W = RTT * BW + Qsize • Therefore, Qsize ≈ RTT * BW
 - Therefore, QSIZE = RTT B
 - Ensures 100% utilization
 - Delay?
 - Varies between RTT and 2 * RTT

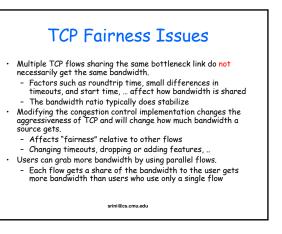


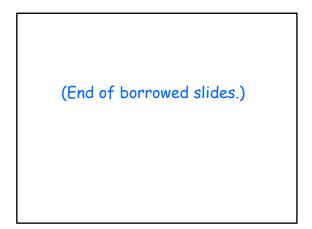




srini@cs.cmu.edu




Changing Workloads


- New applications are changing the way TCP is used
- 1980's Internet
- Telnet & FTP → long lived flows
- Well behaved end hosts
- Homogenous end host capabilities
- Simple symmetric routing
- 2000's Internet
 - Web & more Web \rightarrow large number of short xfers
 - Wild west everyone is playing games to get bandwidth
 - Cell phones and toasters on the Internet
 - Policy routing

srini@cs.cmu.edu

srini@cs.cmu.edu

- TCP is unfair (bandwidth proportional to 1/RTT).
- TCP is unstable (depends on # of flows and RTT).
- TCP is inefficient (takes too long to grab the window)
- All exacerbated by "long" and/or "fat" networks.
- Solution:
 - Change all the routers.
 - Generalize ECN.
 - Separate efficiency (MIMD) and fairness (AIMD) controllers.
- Slides by Dina Katabi, SIGCOMM 2002.

ACC and Pushback: Background

- Router can use inverse square-root law to identify nonresponsive flows, or other means to identify high-bandwidth flows (bullies).
- Drop preferentially at congested router.
- Floyd and Fall, Promoting...
 Mahajan and Floyd, RED-PD.
- What about aggregate flows from many sources? - Mobs: flash crowds
- Crooks or vandals/terrorists (DDOS)
- "Bullies, Mobs, and Crooks" talk by Sally Floyd - (on pushback web page)
- Controlling High-Bandwidth Aggregates in the Network

ACC and Pushback: Issues

- Am I in trouble?
- Whose fault is it?
- Should I punish (throttle) them?
- If so, how much?
- Should I ask somebody else to throttle them for me?
- When should I stop?

ACC and Pushback: Trigger

- Am I in trouble? Monitor packet drops.
- Whose fault is it?
 - Examine packets dropped by AQM/RED.
 - Identify congestion signature: dest prefix.
 - Fair?
 - Per-flow state?

ACC and Pushback: Action

- Should I punish (throttle) the aggregate?
 Yes.
- If so, how much?
- Just enough to ensure reasonable service for others. Nothing "Draconian".
- Should I ask somebody else to throttle them for me?
 If you can identify substantially contributing
 - upstream routers, ask them for help.
- When should I stop?
 - May need feedback from upstream routers.

When and Who?

- ACC Agent in router maintains rolling drop history.
- Drop above threshold for last K seconds?
- Identify aggregates.
 - Group rates by 24-bit destination prefixes.
 - Merge adjacent prefixes.
 - Narrow to longest common prefix.
- Don't penalize more than some max configured number of aggregates.
- Keep ACC rare.

How and How Much?

- Preferentially drop from aggregates to bring ambient drop rate down to configured threshold.
- Don't drive aggregates below their competitors.
- Identify uniform rate limit L sufficient to distribute all the excess drops among the i aggregates.
 Fair distribution of pain?
- Apply leaky bucket for aggregates to rate limit L.

Pushback

- If aggregates don't respond (drop rate is high), then ask for help from upstream routers with pushback.
- Identify contributing upstream routers.
- Assess their flow rates.
- Distribute restriction across them in proportion to their flow rates.
- The restriction is a lease (requires maintenance).
- Upstream routers apply restriction only to the traffic that will traverse the congested router.

Discussion

- How does pushback reduce collateral damage?
- Is it enough?
- Could pushback itself be an attack vector?
- What about XCP?
- How could an attacker defeat ACC?
- Trigger time, release time
- Validation methodology: enough?
- Will this stuff ever get deployed? If not, what good is doing the research?