
1

Routing

Jeff Chase
Duke University

IP Routing

From Click

IP Routing

From Click

The Internet
Internet Map

From CAIDA

IP Address Allocation
• Originally (“classful” addrs), 4 address classes

– “A”: 0 | 7 bit network | 24 bit host (1M each)
– “B”: 10 | 14 bit network | 16 bit host (64K)
– “C”: 110 | 21 bit network | 8 bit host (255)
– “D”: 1110 | 28 bit multicast group #

• Assign net # centrally, host # locally
– IBM has class A address
– Duke has class B address

• What is a network “prefix”?

{razor,vahdat}@cs.duke.edu

IP Address Issues
• We can run out

– 4B IP addresses; 4B microprocessors in 1997
• We’ll run out faster if sparsely allocated

– Rigid structure causes internal fragmenting
– E.g., assign a class C address to site with 2

computers
• Waste 99% of assigned address space

• Need address aggregation to keep tables small
– 2 million class C networks
– Entry per network in IP forwarding tables

• Scalability?
{razor,vahdat}@cs.duke.edu

2

Efficient IP Address
Allocation

• Subnets
– Split net addresses between multiple sites

• Supernets
– Assign adjacent net addresses to same

organization
– Classless routing (CIDR)

• Combine routing table entries whenever all
nodes with same prefix share same hop

• Hardware support for fast prefix lookup

{razor,vahdat}@cs.duke.edu

Physical Networks and IP
Addresses

• Originally: network part of IP address identifies
exactly one physical network
– What about large campuses with many physical

networks?

{razor,vahdat}@cs.duke.edu

Subnetting
• Subnetting: introduce subnet masks

– All hosts on same network already have same
network #

– Subnet mask: hosts on one network have same
subnet #

– Subnet mask: 255.255.255.128, IP: 128.96.34.15
• This says top 25-bits identify the network
• Class B: 16-bits for network #, 9-bits for subnet
• Logical AND Host and mask for Subnet #
• 128.96.34.15 AND 255.255.255.128

128.96.34.0
{razor,vahdat}@cs.duke.edu

Subnetting and Forwarding
• Task of forwarding changes:

– Hosts check if on same subnet (using mask)
• Task of routers change:

– Replace <network #, next hop> with (must send
prefix):
• <subnet #, subnet mask, next hop>

– For each dest IP addr
• Perform logical AND of IP addr with mask
• Compare to subnet #

– How to do this efficiently?

{razor,vahdat}@cs.duke.edu

CIDR
• Classless Interdomain Routing (CIDR)

– Balances between need for fewer entries in
forwarding tables and need to efficiently
distribute IP address space

• Example: site that requires 16 class-C IP addresses
– Use 16 contiguous class C addrs, e.g., 192.4.16-

192.4.31
– Top 20 bits are identical
– Between a class B and class C addr

• “Classless”
• Need routing protocols to recognize CIDR

{razor,vahdat}@cs.duke.edu

On Network Prefixes
• All these network addresses describe the same

network
– 152.3.128.0/17
– 152.3.128.15/17
– 152.3.128/17
– 152.3.128.0/255.255.128.0
– 152.3.128.75/255.255.128.0

• This network has a prefix of 17 (most significant bits
in address)

{razor,vahdat}@cs.duke.edu

3

Subnetting vs. Supernetting
• Subnetting attempts to share one address among

multiple physical networks
• Supernetting attempts to collapse multiple addresses

assigned to single Autonomous System (AS) onto one
address

• CIDR essentially discards all class-based addressing
– Use prefix notation now

{razor,vahdat}@cs.duke.edu

Interdomain Routing
• Two kinds of networks/domains

– Stub
– Transit (ISP)

• Three kinds of relationships for each hop destination:
– Provider: transit provides service for a stub or

another transit. (uphill: +1)
– Peer: two networks exchange traffic. (sideways: 0)
– Customer. (downhill: -1)

• Valley-free paths
– Type 1: {+1}*{-1}*
– Type 2: {+1}*0{-1}*

Routes
• BGP speakers know of three kinds of routes:

– My routes (for traffic destined to me)
– Routes learned from a provider
– Routes learned from a peer
– Routes learned from a customer

• Specific relationships
– Sibling is a kind of peer (same owner, exchange all

routes).
– Backup: peer or provider that is less preferred,

for use only when the primary path fails.

Export Rules
• Driven by self-interest

– I want to get good service for my customers.
– I want you to have good service too, but not at my

expense.
• Exporting to provider or peer

– My routes and my customer routes
– Not routes from peers or other providers

• Exporting to a customer
– All routes I know

Malicious Routers
• Can a router suppress paths advertised by its

neighbors?
• Can a router lie about its own identity?
• Can a router synthesize a fake path to an origin?

– Hijacking
– Lie about neighbor advertisements

• Can a router modify the paths advertised by its
neighbors?

• Can colluding routers advertise a fake path between
them? Why would they do such a thing?

• What defenses do we have against these attacks?

Defenses
• Prevent routers from lying about what someone else

has said to them.
• Prevent adversaries from interposing on

communication between routers.
• Detect inconsistent paths and suppress paths through

the likely adversary?
• How to identify the source of a problem?

4

Whisper
• Simple hashing can prevent an adversary from faking

a shorter path to an origin than the adversary itself
has.

• However, an adversary can modify advertised paths
as long is it does not change their length.

• “Strong whisper” enables detection of modified paths
as “inconsistent” by any other router that learns of
multiple paths to the same origin.

Suppressing Bogus Paths
• Problem: whisper cannot identify the adversary, or

even which route in an inconsistent pair is bogus.
• Solution: guess.
• The adversary is always present in the AS path for a

bogus route.
• Its neighbors can always guarantee this property.

– (If the neighbor fails to do this then we can
consider the neighbor as an adversary.)

• Downgrade the reputation of all AS IDs on any path
that is part of an inconsistent pair.

• Avoid paths through disreputable Autonomous
Systems.

Listen
• Identify black holes by watching for completed TCP

connections.
• Problem: may only see one direction of flow.
• Solution: if you see data after a SYN, it’s probably

OK.
• Problem: An adversary can fake completed

connections.
• Solution: drop some packets and see if it notices.
• Problem: it can pretend to notice.
• Solution: monitor to see if it is pretending…

