
Outrunning Moore’s Law
Can IP-SANs close the

host-network gap?

Jeff Chase
Duke University

But first….
• This work addresses questions that are important in

the industry right now.
• It is an outgrowth of Trapeze project: 1996-2000.
• It is tangential to my primary research agenda.

– Resource management for large-scale shared service
infrastructure.

– Self-managing computing/storage utilities
– Internet service economy
– Federated distributed systems
– Amin Vahdat will speak about our work on Secure Highly

Available Resource Peering (SHARP) in a few weeks.

A brief history
• Much research on fast communication and end-system

TCP/IP performance through 1980s and early 1990s.
• Common theme: advanced NIC features and host/NIC

boundary.
– TCP/IP offload controversial: early efforts failed
– User-level messaging and Remote Direct Memory Access or

RDMA (e.g., unet)
• SAN market grows enormously in mid-1990s

– VI Architecture standardizes SAN messaging host interface
in 1997-1998.

– FibreChannel (FC) creates market for network block storage.
• Then came Gigabit Ethernet…

A brief history, part 2

• “Zero-copy” TCP/IP
• “First” gigabit TCP [1999]
• Consensus that zero-copy sockets

are not general [2001]
• IETF RDMA working group [2002]
• Direct Access File System [2002]
• iSCSI block storage for TCP/IP
• Revival of TCP/IP offload
• 10+GE
• NFS/RDMA, offload chips, etc.
• Uncalibrated marketing claims

TCP/IP
Ethernet

SAN

???

iSCSI DAFS

Ethernet/IP in the data center

• 10+Gb/s Ethernet continues the trend of Ethernet
speeds outrunning Moore’s Law.

• Ethernet runs IP.
• This trend increasingly enables IP to compete in “high

performance” domains.
– Data centers and other “SAN” markets

• {System, Storage, Server, Small} Area Network
• Specialized/proprietary/nonstandard

– Network storage: iSCSI vs. FC
– Infiniband vs. IP over 10+GE

Ethernet/IP vs. “Real” SANs
• IP offers many advantages

– One network
– Global standard
– Unified management, etc.

• But can IP really compete?
• What do “real” SANs really offer?

– Fatter wires?
– Lower latency?
– Lower host overhead

SAN vs. Ethernet Wire Speeds

time

Log
Bandwidth:
smoothed

step
function

Ethernet

SAN

time

Ethernet

SAN

Scenario #1 Scenario #2

Outrunning Moore’s Law?

time

Network
Bandwidth

per
CPU cycle

Ethernet

SAN

Whichever scenario comes to pass,
both SANs and Ethernet are
advancing ahead of Moore’s Law.

compute-intensive apps

I/O-intensive apps
high performance (data center?)

How much bandwidth
do data center
applications need?

“Amdahl’s
other law”

etc.

The problem: overhead

TCP/IPSAN

a

o

a
o

Ethernet is cheap, and cheap NICs are dumb.
Although TCP/IP family protocol processing itself is
reasonably efficient, managing a dumb NIC steals
CPU/memory cycles away from the application.

a = application processing per unit of bandwidth
o = host communication overhead per unit of bandwidth

Bandwidth (wire speed)

1/(a+o)

The host/network gap

Host overhead (o)

Application
(server)

throughput

Host saturation
throughput curve

TCP/IPSAN

Gap

Low-overhead SANs can
deliver higher throughput,
even when the wires are
the same speed.

Hitting the wall

time

Bandwidth
per

CPU cycle Ethernet

SANHost
saturation

point

Throughput improves as
hosts advance, but
bandwidth per cycle is
constant once the host
saturation point is
reached.

“IP SANs”
• If you believe in the problem, then the solution is to

attach hosts to the faster wires with smarter NICs.
– Hardware checksums, interrupt suppression
– Transport offload (TOE)
– Connection-aware w/ early demultiplexing
– ULP offload (e.g., iSCSI)
– Direct data placement/RDMA

• Since these NICs take on the key characteristics of
SANs, let’s use the generic term “IP-SAN”.
– or just “offload”

How much can IP-SANs help?
• IP-SAN is a difficult engineering challenge.

– It takes time and money to get it right.
• LAWS [Shivam&Chase03] is a “back of napkin” analysis

to explore potential benefits and limitations.
• Figure of merit: marginal improvement in peak

application throughput (“speedup”)
• Premise: Internet servers are fully pipelined

– Ignore latency (your mileage may vary)
– IP-SANs can improve throughput if host saturates.

What you need to know (about)
• Importance of overhead and effect on performance
• Distinct from latency, bandwidth
• Sources of overhead in TCP/IP communication

– Per segment vs. per byte (copy and checksum)
• MSS/MTU size, jumbo frames, path MTU discovery
• Data movement from NIC through kernel to app
• RFC 793 (copy semantics) and its impact on the socket model

and data copying overhead.
• Approaches exist to reduce it, and they raise critical

architectural issues (app vs. OS vs. NIC)
• RDMA+offload and the layer controversy
• Skepticism of marketing claims for proposed fixes.
• Amdahl’s Law
• LFNs

Focusing on the Issue
• The key issue IS NOT:

– The pipes: Ethernet has come a long way since
1981.
• Add another zero every three years?

– Transport architecture: generality of IP is worth
the cost.

– Protocol overhead: run better code on a faster
CPU.

– Interrupts, checksums, etc: the NIC vendors can
innovate here without us.

All of these are part of the bigger picture, but we don’t
need an IETF working group to “fix” them.

The Copy Problem
• The key issue IS data movement within the host.

– Combined with other overheads, copying sucks up
resources needed for application processing.

• The problem won’t go away with better technology.
– Faster CPUs don’t help: it’s the memory.

• General solutions are elusive…on the receive side.
• The problem exposes basic structural issues:

– interactions among NIC, OS, APIs, protocols.

“Zero-Copy” Alternatives
• Option 1: page flipping

• NIC places payloads in aligned memory; OS uses
virtual memory to map it where the app wants it.

• Option 2: scatter/gather API
• NIC puts the data wherever it want; app accepts

the data wherever it lands.
• Option 3: direct data placement

• NIC puts data where the headers say it should go.
Each solution involves the OS, application, and NIC to some

degree.

Page Flipping: the Basics

K U

NIC

Header
splitting VM remaps pages

at socket layer
Aligned

payload buffers

Receiving app specifies
buffers (per RFC 793 copy

semantics).

Goal: deposit payloads in
aligned buffer blocks

suitable for the OS VM
and I/O system.

Page Flipping with Small MTUs

NIC

Host

K U

Split transport headers,
sequence and coalesce

payloads for each
connection/stream/flow.

Give up on
Jumbo Frames.

Page Flipping with a ULP

NIC

Host

K U

Split transport and ULP
headers, coalesce

payloads for each stream
(or ULP PDU).

ULP PDUs encapsulated in
stream transport (TCP, SCTP)

Example: an NFS
client reading a file

Page Flipping: Pros and Cons
• Pro: sometimes works.

– Application buffers must match transport
alignment.

• NIC must split headers and coalesce payloads to fill
aligned buffer pages.

• NIC must recognize and separate ULP headers as well
as transport headers.

• Page remap requires TLB shootdown for SMPs.
– Cost/overhead scales with number of processors.

Option 2: Scatter/Gather

NIC

Host

K U

NIC demultiplexes
packets by ID of

receiving process.

Deposit data anywhere in
buffer pool for recipient.

System and apps see data
as arbitrary scatter/gather
buffer chains (readonly).

Fbufs and IO-Lite [Rice]

Scatter/Gather: Pros and
Cons

• Pro: just might work.
• New APIs
• New applications
• New NICs
• New OS
• May not meet app alignment constraints.

Option 3: Direct Data
Placement

NIC

NIC “steers” payloads
directly to app buffers, as

directed by transport
and/or ULP headers.

DDP: Pros and Cons
• Effective: deposits payloads directly in designated

receive buffers, without copying or flipping.
• General: works independent of MTU, page size,

buffer alignment, presence of ULP headers, etc.
• Low-impact: if the NIC is “magic”, DDP is compatible

with existing apps, APIs, ULPs, and OS.
• Of course, there are no magic NICs…

DDP: Examples
• TCP Offload Engines (TOE) can steer payloads directly to

preposted buffers.
– Similar to page flipping (“pack” each flow into buffers)
– Relies on preposting, doesn’t work for ULPs

• ULP-specific NICs (e.g., iSCSI)
– Proliferation of special-purpose NICs
– Expensive for future ULPs

• RDMA on non-IP networks
– VIA, Infiniband, ServerNet, etc.

Remote Direct Memory
Access

NIC

RDMA-like
transport shim

carries directives
and steering tags

in data stream.

Remote
Peer

Register buffer steering tags with
NIC, pass them to remote peer.

Directives and steering
tags guide NIC data

placement.

LAWS ratios

CPU intensity (compute/communication) of the
application (Application ratio)

γ

Portion of network work not eliminated by
offload (Structural ratio)

β

Percentage of wire speed the host can deliver
for raw communication without offload (Wire
ratio)

σ

Ratio of Host CPU speed to NIC processing
speed (Lag ratio)

α

“On the Elusive Benefits of Protocol Offload”, Shivam and Chase, NICELI 2003.

Application ratio (γ)

a

o

a
o

a
o

a

o

Application ratio (γ) captures “compute-intensity”.

γ = a/o

For a given application,
lower overhead increases γ.

For a given communication system,
γ is a property of the application:
it captures processing per unit of
bandwidth.

compute-intensity (γ)

throughput
increase

(%)

Amdahl’s Law bounds the
potential improvement to 1/γ

when the system is still
host-limited after offload.

What is γ for “typical”
services in the data center?

γ and Amdahl’s Law

CPU-intensive apps
⇒ low benefit

network-intensive
apps ⇒ high benefit

Apache Apache
w/ Perl?

1/γ

Wire ratio (σ)
Wire ratio (σ) captures host speed relative to network.

B = network bandwidth
Host saturation throughput for
raw communication = 1/o

σ = (1/o) / B

σ >>1
Slow network

Fast host

σ →0
Fast network

Slow host

σ = 1

Best “realistic”
scenario: wire speed
just saturates host.

Network processing
cannot saturate
CPU when σ > 1.

compute-intensity (γ)

Improvement when the
system is network-limited
after transport offload is:

((γ+1)/σ)−1

Effect of wire ratio (σ)

throughput
increase

(%)

Lower σ
⇒ faster network
⇒ benefit grows rapidly

Higher σ
⇒ slower network
⇒ little benefit

compute-intensity (γ)

throughput
increase

(%)

Peak benefit from
offload occurs at
intersection point.

host-limited
1/γ

Putting it all together

network-limited

σ = γ

Peak benefit occurs when the
application drives the full
network bandwidth with no
host cycles left idle.

((γ+1)/σ)−1

compute-intensity (γ)

throughput
increase

(%)

Offload for fast hosts
Faster hosts, better protocol implementations, and slower
networks all push σ higher.

E.g., a 100 Mb/s net on a “gigabit-ready” host gives σ=10.

The throughput improvement is bounded by 1/σ (e.g., 10%).

σ = γ

Key question: Will network
advances continue to outrun
Moore’s Law and push σ
lower over the long term?

compute-intensity (γ)

throughput
increase

(%)

Offload for fast networks
Peak benefit is unbounded as the
network speed advances relative to
the host!

But: those benefits apply only to a
narrow range of low-γ applications.

With real application processing
(higher γ) the potential benefit is
always bounded by 1/γ.

σ = γ

σ→0

compute-intensity (γ)

throughput
increase

(%)

Offload for a “realistic” network
The network is realistic if the host can handle
raw communication at wire speed (σ≥1).
The “best realistic scenario” is σ=1: raw
communication just saturates the host.
In this case, offload improves throughput by
up to a factor of two (100%), but no more.

σ = γ

The peak benefit occurs when
γ=1: the host is evenly split
between overhead and app
processing before offload.

a
o a

compute-intensity (γ)

throughput
impact

(%)

Pitfall: offload to a slow NIC
If the NIC is too slow, it may limit throughput when γ is low.

The slow NIC has no impact on throughput unless it saturates,
but offload may do more harm than good for low-γ applications.

compute-intensity (γ)

throughput
impact

(%)

Quantifying impact of a slow NIC

The lag ratio (α) captures the relative speed of
the host and NIC for communication processing.

When the NIC lags behind the host
(α>1) then the peak benefit occurs
when α=γ, and is bounded by 1/α.

We can think of the lag ratio in
terms of Moore’s Law.
E.g., α=2 when NIC technology lags
the host by 18 months.
Then the peak benefit from
offload is 50%, and it occurs for
an application that wasted 33% of
system CPU cycles on overhead.

compute-intensity (γ)

throughput
impact

(%)

IP transport offload: “a dumb
idea whose time has come”?

Offload enables structural improvements such as direct data
placement (RDMA) that eliminate some overhead from the
system rather than merely shifting it to the NIC.

If a share β of the overhead remains,
then the peak benefit occurs when
αβ=γ, and is bounded by 1/αβ.

If β = 50%, then we can get the
full benefit from offload with 18
month-old NIC technology.
DDP/RDMA eases time-to-market
pressure for offload NICs.

Jeff Mogul, “TCP
offload is a dumb
idea whose time has
come”, HotOS 2003.

Outrunning Moore’s Law,
revisited

time

Network
Bandwidth

per
CPU cycle

Ethernet

high-volume market

high-margin market

niche market

“Amdahl’s
other law”

IP-SANs will free IP/Ethernet technology to advance
along the curve to higher bandwidth per CPU cycle.
But how far up the curve do we need to go?
If we get ahead of our applications, then the benefits fall
off quickly. What if Amdahl was right?

Conclusion
• To understand the role of 10+GE and IP-SAN in the

data center, we must understand the applications (γ).
• “Lies, damn lies, and point studies.”

– Careful selection of γ and σ can yield arbitrarily
large benefits from SAN technology, but those
benefits may be elusive in practice.

• LAWS analysis exposes fundamental opportunities
and limitations of IP-SANs and other approaches to
low-overhead I/O (including non-IP SANs).

• Helps guide development, evaluation, and deployment.

