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But first….
• This work addresses questions that are important in 

the industry right now.
• It is an outgrowth of Trapeze project: 1996-2000.
• It is tangential to my primary research agenda.

– Resource management for large-scale shared service 
infrastructure.

– Self-managing computing/storage utilities
– Internet service economy
– Federated distributed systems
– Amin Vahdat will speak about our work on Secure Highly 

Available Resource Peering (SHARP) in a few weeks.



A brief history
• Much research on fast communication and end-system 

TCP/IP performance through 1980s and early 1990s.
• Common theme: advanced NIC features and host/NIC 

boundary.
– TCP/IP offload controversial: early efforts failed
– User-level messaging and Remote Direct Memory Access or 

RDMA (e.g., unet)
• SAN market grows enormously in mid-1990s

– VI Architecture standardizes SAN messaging host interface 
in 1997-1998.

– FibreChannel (FC) creates market for network block storage.
• Then came Gigabit Ethernet…



A brief history, part 2

• “Zero-copy” TCP/IP
• “First” gigabit TCP [1999]
• Consensus that zero-copy sockets 

are not general [2001]
• IETF RDMA working group [2002]
• Direct Access File System [2002]
• iSCSI block storage for TCP/IP
• Revival of TCP/IP offload
• 10+GE 
• NFS/RDMA, offload chips, etc.
• Uncalibrated marketing claims

TCP/IP
Ethernet

SAN

???

iSCSI DAFS



Ethernet/IP in the data center

• 10+Gb/s Ethernet continues the trend of Ethernet 
speeds outrunning Moore’s Law. 

• Ethernet runs IP.
• This trend increasingly enables IP to compete in “high 

performance” domains.
– Data centers and other “SAN” markets

• {System, Storage, Server, Small} Area Network
• Specialized/proprietary/nonstandard

– Network storage: iSCSI vs. FC
– Infiniband vs. IP over 10+GE



Ethernet/IP vs. “Real” SANs
• IP offers many advantages

– One network
– Global standard
– Unified management, etc.

• But can IP really compete?
• What do “real” SANs really offer?

– Fatter wires?
– Lower latency?
– Lower host overhead
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Outrunning Moore’s Law?
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Whichever scenario comes to pass, 
both SANs and Ethernet are 
advancing ahead of Moore’s Law.

compute-intensive apps

I/O-intensive apps
high performance (data center?)

How much bandwidth 
do data center 
applications need?

“Amdahl’s 
other law”

etc.



The problem: overhead

TCP/IPSAN
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Ethernet is cheap, and cheap NICs are dumb. 
Although TCP/IP family protocol processing itself is 
reasonably efficient, managing a dumb NIC steals 
CPU/memory cycles away from the application. 

a = application processing per unit of bandwidth
o = host communication overhead per unit of bandwidth
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Low-overhead SANs can 
deliver higher throughput, 
even when the wires are 
the same speed.



Hitting the wall
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constant once the host 
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reached.



“IP SANs”
• If you believe in the problem, then the solution is to 

attach hosts to the faster wires with smarter NICs.
– Hardware checksums, interrupt suppression
– Transport offload (TOE)
– Connection-aware w/ early demultiplexing
– ULP offload (e.g., iSCSI)
– Direct data placement/RDMA

• Since these NICs take on the key characteristics of 
SANs, let’s use the generic term “IP-SAN”.
– or just “offload”



How much can IP-SANs help?
• IP-SAN is a difficult engineering challenge.

– It takes time and money to get it right.
• LAWS [Shivam&Chase03] is a “back of napkin” analysis 

to explore potential benefits and limitations.
• Figure of merit: marginal improvement in peak 

application throughput (“speedup”)
• Premise: Internet servers are fully pipelined

– Ignore latency (your mileage may vary)
– IP-SANs can improve throughput if host saturates.



What you need to know (about)
• Importance of overhead and effect on performance
• Distinct from latency, bandwidth
• Sources of overhead in TCP/IP communication

– Per segment vs. per byte (copy and checksum)
• MSS/MTU size, jumbo frames, path MTU discovery
• Data movement from NIC through kernel to app
• RFC 793 (copy semantics) and its impact on the socket model 

and data copying overhead.
• Approaches exist to reduce it, and they raise critical 

architectural issues (app vs. OS vs. NIC)
• RDMA+offload and the layer controversy
• Skepticism of marketing claims for proposed fixes.
• Amdahl’s Law
• LFNs



Focusing on the Issue
• The key issue IS NOT:

– The pipes: Ethernet has come a long way since 
1981.
• Add another zero every three years?

– Transport architecture: generality of IP is worth 
the cost.

– Protocol overhead: run better code on a faster 
CPU.

– Interrupts, checksums, etc:  the NIC vendors can 
innovate here without us.

All of these are part of the bigger picture, but we don’t 
need an IETF working group to “fix” them.



The Copy Problem
• The key issue IS data movement within the host.

– Combined with other overheads, copying sucks up 
resources needed for application processing.

• The problem won’t go away with better technology.
– Faster CPUs don’t help: it’s the memory.

• General solutions are elusive…on the receive side.
• The problem exposes basic structural issues:

– interactions among NIC, OS, APIs, protocols.



“Zero-Copy” Alternatives
• Option 1: page flipping

• NIC places payloads in aligned memory; OS uses 
virtual memory to map it where the app wants it.

• Option 2: scatter/gather API
• NIC puts the data wherever it want; app accepts 

the data wherever it lands.
• Option 3: direct data placement

• NIC puts data where the headers say it should go.
Each solution involves the OS, application, and NIC to some 

degree.



Page Flipping: the Basics
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Receiving app specifies 
buffers (per RFC 793 copy 

semantics).

Goal: deposit payloads in 
aligned buffer blocks 

suitable for the OS VM 
and I/O system.



Page Flipping with Small MTUs

NIC

Host

K U

Split transport headers, 
sequence and coalesce 

payloads for each 
connection/stream/flow.

Give up on 
Jumbo Frames.



Page Flipping with a ULP

NIC

Host

K U

Split transport  and ULP 
headers, coalesce 

payloads for each stream 
(or ULP PDU).

ULP PDUs encapsulated in 
stream transport (TCP, SCTP)

Example: an NFS 
client reading a file



Page Flipping: Pros and Cons
• Pro: sometimes works.

– Application buffers must match transport 
alignment.

• NIC must split headers and coalesce payloads to fill 
aligned buffer pages.

• NIC must recognize and separate ULP headers as well 
as transport headers.

• Page remap requires TLB shootdown for SMPs.
– Cost/overhead scales with number of processors.



Option 2: Scatter/Gather

NIC

Host

K U

NIC demultiplexes
packets by ID of 

receiving process.

Deposit data anywhere in 
buffer pool for recipient.

System and apps see data 
as arbitrary scatter/gather 
buffer chains (readonly).

Fbufs and IO-Lite [Rice]



Scatter/Gather: Pros and 
Cons

• Pro: just might work.
• New APIs
• New applications
• New NICs
• New OS
• May not meet app alignment constraints.



Option 3: Direct Data 
Placement

NIC

NIC “steers” payloads 
directly to app buffers, as 

directed by transport 
and/or ULP headers.



DDP: Pros and Cons
• Effective: deposits payloads directly in designated 

receive buffers, without copying or flipping.
• General: works independent of MTU, page size, 

buffer alignment, presence of ULP headers, etc.
• Low-impact: if the NIC is “magic”, DDP is compatible 

with existing apps, APIs, ULPs, and OS.
• Of course, there are no magic NICs…



DDP: Examples
• TCP Offload Engines (TOE) can steer payloads directly to 

preposted buffers.
– Similar to page flipping (“pack” each flow into buffers)
– Relies on preposting, doesn’t work for ULPs

• ULP-specific NICs (e.g., iSCSI)
– Proliferation of special-purpose NICs
– Expensive for future ULPs

• RDMA on non-IP networks
– VIA, Infiniband, ServerNet, etc.



Remote Direct Memory 
Access

NIC

RDMA-like 
transport shim 

carries directives 
and steering tags 

in data stream.

Remote 
Peer

Register buffer steering tags   with 
NIC, pass them to remote peer. 

Directives and steering 
tags guide NIC data 

placement.



LAWS ratios

CPU intensity (compute/communication) of the 
application (Application ratio)

γ

Portion of network work not eliminated by 
offload (Structural ratio)

β

Percentage of wire speed the host can deliver 
for raw communication without offload (Wire 
ratio)

σ

Ratio of Host CPU speed to NIC processing 
speed (Lag ratio)

α

“On the Elusive Benefits of Protocol Offload”, Shivam and Chase, NICELI 2003.



Application ratio (γ)
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Application ratio (γ) captures “compute-intensity”.

γ = a/o

For a given application, 
lower overhead increases γ.

For a given communication system, 
γ is a property of the application: 
it captures processing per unit of 
bandwidth.



compute-intensity (γ)

throughput
increase
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Amdahl’s Law bounds the 
potential improvement to 1/γ

when the system is still 
host-limited after offload.

What is γ for “typical”
services in the data center?

γ and Amdahl’s Law

CPU-intensive apps 
⇒ low benefit

network-intensive 
apps ⇒ high benefit

Apache Apache 
w/ Perl?

1/γ



Wire ratio (σ)
Wire ratio (σ) captures host speed relative to network. 

B = network bandwidth
Host saturation throughput for 
raw communication = 1/o

σ = (1/o) / B

σ >>1
Slow network

Fast host

σ →0
Fast network

Slow host

σ = 1

Best “realistic”
scenario: wire speed 
just saturates host.

Network processing 
cannot saturate 
CPU when σ > 1.



compute-intensity (γ)

Improvement when the 
system is network-limited
after transport offload is:

((γ+1)/σ)−1

Effect of wire ratio (σ)

throughput
increase 

(%)

Lower σ
⇒ faster network
⇒ benefit grows rapidly

Higher σ
⇒ slower network
⇒ little benefit



compute-intensity (γ)
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Peak benefit from 
offload occurs at 
intersection point.

host-limited
1/γ

Putting it all together

network-limited

σ = γ

Peak benefit occurs when the 
application drives the full 
network bandwidth with no 
host cycles left idle.

((γ+1)/σ)−1
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Offload for fast hosts
Faster hosts, better protocol implementations, and slower 
networks all push σ higher.

E.g., a 100 Mb/s net on a “gigabit-ready” host gives σ=10.

The throughput improvement is bounded by 1/σ (e.g., 10%).

σ = γ

Key question: Will network 
advances continue to outrun 
Moore’s Law and push σ
lower over the long term?
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Offload for fast networks
Peak benefit is unbounded as the 
network speed advances relative to 
the host!

But: those benefits apply only to a 
narrow range of low-γ applications.

With real application processing 
(higher γ) the potential benefit is 
always bounded by 1/γ.

σ = γ

σ→0



compute-intensity (γ)

throughput
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Offload for a “realistic” network
The network is realistic if the host can handle 
raw communication at wire speed (σ≥1).
The “best realistic scenario” is σ=1: raw 
communication just saturates the host.
In this case, offload improves throughput by 
up to a factor of two (100%), but no more.

σ = γ

The peak benefit occurs when 
γ=1: the host is evenly split 
between overhead and app 
processing before offload.

a
o a



compute-intensity (γ)

throughput
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Pitfall: offload to a slow NIC
If the NIC is too slow, it may limit throughput when γ is low. 

The slow NIC has no impact on throughput unless it saturates, 
but offload may do more harm than good for low-γ applications.
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Quantifying impact of a slow NIC

The lag ratio (α) captures the relative speed of 
the host and NIC for communication processing.

When the NIC lags behind the host 
(α>1) then the peak benefit occurs 
when α=γ, and is bounded by 1/α. 

We can think of the lag ratio in 
terms of Moore’s Law.
E.g., α=2 when NIC technology lags 
the host by 18 months.
Then the peak benefit from 
offload is 50%, and it occurs for 
an application that wasted 33% of 
system CPU cycles on overhead.



compute-intensity (γ)

throughput
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IP transport offload: “a dumb 
idea whose time has come”? 

Offload enables structural improvements such as direct data 
placement (RDMA) that eliminate some overhead from the 
system rather than merely shifting it to the NIC. 

If a share β of the overhead remains, 
then the peak benefit occurs when 
αβ=γ, and is bounded by 1/αβ. 

If β = 50%, then we can get the 
full benefit from offload with 18 
month-old NIC technology. 
DDP/RDMA eases time-to-market 
pressure for offload NICs.

Jeff Mogul, “TCP 
offload is a dumb 
idea whose time has 
come”, HotOS 2003.



Outrunning Moore’s Law, 
revisited
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“Amdahl’s 
other law”

IP-SANs will free IP/Ethernet technology to advance 
along the curve to higher bandwidth per CPU cycle.
But how far up the curve do we need to go?
If we get ahead of our applications, then the benefits fall 
off quickly.  What if Amdahl was right?



Conclusion
• To understand the role of 10+GE and IP-SAN in the 

data center, we must understand the applications (γ).
• “Lies, damn lies, and point studies.”

– Careful selection of γ and σ can yield arbitrarily 
large benefits from SAN technology, but those 
benefits may be elusive in practice.

• LAWS analysis exposes fundamental opportunities 
and limitations of IP-SANs and other approaches to 
low-overhead I/O (including non-IP SANs).

• Helps guide development, evaluation, and deployment. 


