
Security Technologies and Hierarchical TrustSecurity Technologies and Hierarchical Trust

TodayToday

1. Review/Summary of security technologies
• Crypto and certificates

2. Combination of techniques in SSL
• The basis for secure HTTP, ssh, secure IMAP, scp, secure

ftp, …
• Server authentication vs. peer/client authentication

3. Hierarchies in DNS and certificate distribution
• Hierarchies as a basic technique for scale
• Hierarchy of trust and autonomy

A Short QuizA Short Quiz

1. How does TCP rate control reflect “end-to-end”
principles?

2. What is the key drawback of end-to-end rate control?
3. What is the most important advantage of symmetric

crypto (DES) relative to asymmetric crypto (RSA)?
4. What is the most important advantage of asymmetric

crypto relative to symmetric crypto?
5. What is the most important limitation/challenge for

asymmetric crypto with respect to security?

What you really need to know, Part 1What you really need to know, Part 1

Symmetric crypto (DES, 3DES, IDEA,…)
• Pro: cheap and fast, easily supported in hardware
• Con: requires a shared secret (private key, session key)

Asymmetric crypto (Diffie-Hellman, RSA)
• Pro: flexible: use for authentication, privacy, integrity.
• Con: slow
• Pro: solves the private key distribution problem
• Con: introduces a new public key distribution problem:

secure binding of public keys to identities.

What you really need to know, Part 2What you really need to know, Part 2

Asymmetric crypto can be used together with other
techniques in a multitude of ways.
• Hybrid protocols combine advantages of both

Initial exchange uses asymmetric for authentication and
(symmetric) session key exchange, then communicate with
symmetric crypto. Example: SSL, TLS.

• Digital signatures based on secure hash functions
Compute a (small) hash over a (large) message efficiently.

MD5, SHA1: infeasible to forge another message with same hash

Encrypt the hash (and perhaps a nonce) with private key.

What you really need to know, Part 3What you really need to know, Part 3

The “key” challenge today is public key distribution (and revocation).
Approach #1: trust e-mail/web (i.e., assume DNS and IP really go where

you want, and authenticate the source.)
• Example: PGP, GPG, “pretty good”

Approach #2 : use a Public Key Infrastructure (PKI)
• Requires everyone to agree on a central point of trust (CA).
• Difficult to understand and deploy.
• Hierarchy helps.

Approach #3: “web of trust” in which parties establish pairwise trust and
endorse public keys of third parties.
• Local example: SHARP. Involves transitive trust.

What you really need to know, Part #4What you really need to know, Part #4

1. All of this relies on various fragile assumptions about
people and communities.
• Security technology only works if people use it.
• Find the weakest link in the end-to-end chain.
• Compromised key? All bets are off.
• Beware false sense of security! (E.g., WEP)

2. Design for easy, incremental, organic deployment.
• What layer? IPSEC or VPN vs. TLS

3. Understand full range of potential attacks.
• Man-in-middle, replays and nonces, challenge/response
• Useful model to guide analysis: logic of “belief” (BAN)

Projects: Resources/IdeasProjects: Resources/Ideas

• ModelNet emulation
• MACEDON
• Xen VMs/VPNs and Cereus/SIVIC
• Accountable design and SHARP
• IP/NFS interposition: instrumentation, translation
• Secure Web services, WS-Security, Shibboleth
• Computational steering
• Anypoint/XCP
• SFS

The Importance of AuthenticationThe Importance of Authentication

EMLX

This is a picture of a $2.5B move in the value of Emulex Corporation, in
response to a fraudulent press release by short-sellers through InternetWire in
2000. The release was widely disseminated by news media as a statement
from Emulex management, but media failed to authenticate it.

[reproduced from clearstation.com]

Crypto SummaryCrypto Summary
Cryptography functions

• Secret key (e.g., DES)
• Public key (e.g., RSA)
• Message digest (e.g., MD5)

Security services
• Privacy: preventing unauthorized release of information
• Authentication: verifying identity of the remote participant
• Integrity: making sure message has not been altered

Security

Cryptography
algorithms

Public
key

(e.g., RSA)

Secret
key

(e.g., DES)

Message
digest

(e.g., MD5)

Security
services

AuthenticationPrivacy Message
integrity

[Vahdat]

The Underpinnings of Security: EncryptionThe Underpinnings of Security: Encryption
Two functions Encrypt and Decrypt with two keys K-1 and K

• Decrypt(K, Encrypt(K-1, x)) = x
• Know x and Encrypt(K-1, x), cannot comput K or K-1

Secrecy:
• Know Encrypt(K-1, x) but not K, cannot compute x

Integrity:
• Choose x, do not know K-1: cannot compute y such that

Decrypt(K, y) = x
Digests are one-way (lossy) functions

• Cannot compute message from digest
• Cannot compute a second message with the same digest
• Sufficient for integrity

[Vahdat]

Figure 7.2Figure 7.2
Familiar names for the protagonists in security Familiar names for the protagonists in security

protocolsprotocols

Alice First participant
Bob Second participant
Carol Participant in three- and four-party protocols
Dave Participant in four-party protocols
Eve Eavesdropper
Mallory Malicious attacker
Sara A server

Shared Key versus Public Key CryptographyShared Key versus Public Key Cryptography
With shared key K = K-1

• Mostly for pairwise communication or groups of principals that
all trust one another (Data Encryption Standard or DES)

With public key cannot compute K from K-1, or K-1 from K
• K is made public, K-1 kept secret
• Can generate messages without knowing who will read it

(certificate)
• Holder of K-1 can broadcast messages with integrity
• (K-1)-1 = K, send secret messages to holder of K-1

• RSA (Rivest-Shamir-Adelman) most popular scheme

Secret Key much faster than Public Key

[Vahdat]

Figure 7.3Figure 7.3
Cryptography notationsCryptography notations

KA Alice’s secret key
KB Bob’s secret key
KAB Secret key shared between Alice and Bob
KApriv Alice’s private key (known only to Alice)
KApub Alice’s public key (published by Alice for all to read)
{M}K Message Mencrypted with key K
[M]K Message Msigned with keyK

Messages with both Authenticity and SecrecyMessages with both Authenticity and Secrecy

How does A send a message x to B with:
• Authenticity (B knows that only A could have sent it)
• Secrecy (A knows that only B can read the message)

[Vahdat]

Messages with both Authenticity and SecrecyMessages with both Authenticity and Secrecy
How does A send a message x to B with:

• Authenticity (B knows that only A could have sent it)
• Secrecy (A knows that only B can read the message)

A Transmits the following message x
• {{x}KA

-1}KB

What if x is large (performance concerns)?
• A transmits KA to B, B transmits KB to A
• A picks JA, transmits {JA}KB to B
• B picks JB, transmits {JB}KA to A
• Each computes secret key, Ksk = Hash(JA, JB)
• A transmits {x}Ksk to B

[Vahdat]

Certification Authorities: MotivationCertification Authorities: Motivation

What is the problem with the previous approach?

[Vahdat]

Certification Authorities: MotivationCertification Authorities: Motivation

What is the problem with the previous approach?
• Evil router intercepts first public key exchange, imposes its

own public key (with corresponding private key)
• Intercepts subsequent messages and inserts its own version
• Man in the middle attack

Solutions?
• Exchange keys over secure channel (in person)
• Trust certification authority with well-known public key

[Vahdat]

Message DigestMessage Digest
Cryptographic checksum

• Regular checksum protects receiver from accidental changes
• Cryptographic checksum protects receiver from malicious changes

One-way function
• Given cryptographic checksum for a message, virtually impossible to

determine what message produced that checksum; it is not
computationally feasible to find two messages that hash to the same
cryptographic checksum.

Relevance
• Given checksum for a message and you are able to compute exactly the

same checksum for that message, then highly likely this message
produced given checksum

[Vahdat]

Message Integrity ProtocolsMessage Integrity Protocols
Digital signature using RSA

• Compute signature with private key and verify with public key
• A transmits M, {D(M)}KAprivate

• Receiver decrypts digest using KApublic

Digital signature with secret key (server as escrow agent)
• A server, A, {D(M)}KA

• Server A, {A, D(M), t} KS

• A B, M, {A, D(M), t} KS

• B S, B, {A, D(M), t} KS

• S B, {A, D(M), t} KB

[Vahdat]

Figure 7.11Figure 7.11
Digital signatures with public keysDigital signatures with public keys

{h}Kpri

M

Signing

Verifying

E(Kpri, h)

128 bits

H(M) h

M

hH(doc)

D(Kpub,{h}) {h}Kpri h'

h = h'?

M

signed doc

Figure 7.12Figure 7.12
LowLow--cost signatures with a shared secret keycost signatures with a shared secret key

M

Signing

Verifying

H(M+K) h

h'H(M+K)

h

h = h'?

K

M

signed doc

M

K

What happensWhat happens……

https://www.consumefest.com/checkout.html

Figure 7.17Figure 7.17
SSL protocol stackSSL protocol stack

SSL
Handshake
protocol

SSL Change
Cipher Spec

SSL Alert
Protocol

Transport layer (usually TCP)

Network layer (usually IP)

SSL Record Protocol

HTTP Telnet

SSL protocols: Other protocols:

Figure 7.18Figure 7.18
SSL handshake protocolSSL handshake protocol

Client Server

ClientHello
ServerHello

Certificate

Certificate Request

ServerHelloDone

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Establish protocol version, session ID,
cipher suite, compression method,
exchange random values

Optionally send server certificate and
request client certificate

Send client certificate response if
requested

Change cipher suite and finish
handshake

SSL QuestionsSSL Questions

Why doesn’t SSL need/use an authentication service like
Kerberos?

How do SSL endpoints verify the integrity of certificates
(IDs)?

Does s-http guarantee non-repudiation for electronic
transactions? Why/how or why not?

Does SSL guarantee security of (say) credit numbers in
electronic commerce?

Why does SSL allow endpoints to use fake IDs?

Figure 7.13Figure 7.13
X509 Certificate formatX509 Certificate format

Subject Distinguished Name, PublicKey
Issuer Distinguished Name, Signature
Period of validity Not Before Date, Not After Date
Administrativeinformation Version, Serial Number
Extended Information

Hybrid Crypto in SSLHybrid Crypto in SSL

Why does SSL “change ciphers” during the handshake?
How does SSL solve the key distribution problem for

symmetric crypto?
Is key exchange vulnerable to man-in-the-middle attacks?

Figure 7.14Figure 7.14
Performance of encryption and secure digest Performance of encryption and secure digest

algorithmsalgorithms
Key size/hash size

(bits)
Extrapolated

speed
(kbytes/sec.)

PRB optimized
(kbytes/s)

TEA 128 700 -

DES 56 350 7746

Triple-DES 112 120 2842

IDEA 128 700 4469

RSA 512 7 -

RSA 2048 1 -

MD5 128 1740 62425

SHA 160 750 25162

Figure 7.19Figure 7.19
SSL handshake configuration optionsSSL handshake configuration options

Component Description Example

Key exchange
method

the method to be used for
exchange of a session key

RSA with public-key
certificates

Cipher for data
transfer

the block or stream cipher to be
used for data

IDEA

Message digest
function

for creating message
authentication codes (MACs)

SHA

Figure 7.20Figure 7.20
SSL record protocolSSL record protocol

Application data abcdefghi

abc def ghiRecord protocol units

Compressed units

MAC

Encrypted

TCP packet

Fragment/combine

Compress

Hash

Encrypt

Transmit

Key DistributionKey Distribution
Certificate

• Special type of digitally signed document:
“I certify that the public key in this document belongs to the entity

named in this document, signed X.”
• Name of the entity being certified
• Public key of the entity
• Name of the certified authority
• Digital signature

Certified Authority (CA)
• Administrative entity that issues certificates
• Public key must be widely available (e.g., Verisign)

[Vahdat]

Key Distribution (cont)Key Distribution (cont)

Chain of Trust
• If X certifies that a certain public key belongs to Y, and Y

certifies that another public key belongs to Z, then there
exists a chain of certificates from X to Z

• Someone that wants to verify Z’s public key has to know X’s
public key and follow the chain

• X forms the root of a tree (web?)

Certificate Revocation List
• What happens when a private key is compromised?

[Vahdat]

DNS 101DNS 101
Domain names are the basis for the Web’s global URL space.

provides a symbolic veneer over the IP address space

names for autonomous naming domains, e.g., cs.duke.edu

names for specific nodes, e.g., fran.cs.duke.edu

names for service aliases (e.g., www, mail servers)

• Almost every Internet application uses domain names when
it establishes a connection to another host.

The Domain Name System (DNS) is a planetary name service
that translates Internet domain names.

maps <node name> to <IP address>

(mostly) independent of location, routing etc.

Domain Name HierarchyDomain Name Hierarchy

.edu

unc

cs

duke

cs envmc

www
(prophet)whiteout

cs

washington

com
gov

org
net

firm
shop

arts
web

us

top-level
domains
(TLDs)

fr

generic TLDs

country-code
TLDs

DNS name space is hierarchical:
- fully qualified names are “little endian”
- scalability
- decentralized administration
- domains are naming contexts

replaces primordial flat hosts.txt namespace

How is this different from hierarchical
directories in distributed file systems? Do we

already know how to implement this?

“lookup www.nhc.noaa.gov”

DNS server for
nhc.noaa.gov

local
DNS server

“www.nhc.noaa.gov is
140.90.176.22”

DNS Implementation 101DNS Implementation 101

WWW server for
nhc.noaa.gov

(IP 140.90.176.22)

DNS protocol/implementation:
• UDP-based client/server
• client-side resolvers

typically in a library

gethostbyname, gethostbyaddr

• cooperating servers
query-answer-referral model

forward queries among servers

server-to-server may use TCP
(“zone transfers”)

• common implementation: BIND

DNS Name Server HierarchyDNS Name Server Hierarchy

.edu

unc

duke

cs envmc

...

com
gov

org
net

firm
shop

arts
web

us
fr

Root servers list
servers for every

TLD.

DNS servers are organized into a hierarchy
that mirrors the name space.

Specific servers are designated as
authoritative for portions of the name space.

Subdomains correspond to
organizational (admininstrative)

boundaries, which are not
necessarily geographical.

Servers may delegate
management of

subdomains to child
name servers.

Parents refer
subdomain queries to

their children.

Servers are bootstrapped with pointers
to selected peer and parent servers.

Resolvers are bootstrapped with
pointers to one or more local servers;

they issue recursive queries.

DNS: The Big IssuesDNS: The Big Issues

1. Naming contexts
I want to use short, unqualified names like smirk instead of

smirk.cs.duke.edu when I’m in the cs.duke.edu domain.

2. What about trust? How can we know if a server is
authoritative, or just an impostor?

What happens if a server lies or behaves erratically? What
denial-of-service attacks are possible? What about privacy?

3. What if an “upstream” server fails?
4. Is the hierarchical structure sufficient for scalability?

more names vs. higher request rates

DNS: The PoliticsDNS: The Politics

He who controls DNS controls the Internet.
• TLD registry run by Network Solutions, Inc. until 9/98.

US government (NSF) granted monopoly, regulated but not
answerable to any US or international authority.

• Registration has transitioned to a more open management
structure involving an alphabet soup of organizations.

For companies, domain name == brand.
• Squatters register/resell valuable domain name “real estate”.
• Who has the right to register/use, e.g., coca-cola.com?

