
CPS 216 Spring 2005 
Homework #2 
Assigned: Tuesday, February 15 
Due: Thursday, March 3 
 
Problem 1. 
 
Consider the following B+-tree with a maximum fan-out of 4. 
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For all questions below, assume that you always start with the tree shown above—not the 
result tree you get for the previous question. 
 

(a) Show the result tree after inserting 49. 
(b) Show the result tree after deleting 50. 
(c) Show the result tree after inserting 72. 
(d) Show the result tree after deleting 5. 
(e) What is the minimum number of keys you must delete for this tree to shrink down to 

two levels? Show the sequence of deletions. 
 
Problem 2. 
 
The following question is based on the paper “Generalized Search Trees for Database 
Systems,” by Hellerstein et al. Suppose we want to use GiST to index ranges of the form [x, y), 
where x and y are integers. These ranges may overlap with each other. The queries are of the 
form “find all ranges that overlaps with [a, b).” Discuss briefly how you would implement the 
six basic methods required by GiST, and whether you should set IsOrdered to true and define 
Compare. Highlight the differences between your implementation and the B+-tree 
implementation described in the paper. 
 
Problem 3. 
 
Suppose keys are hashed to 4-bit sequences, and each block can hold three records. We start 
with a hash table with two empty blocks (corresponding to 0 and 1), and insert 16 records 
with keys 0000, 0001, 0010, …, 1111, in order.  Show the final state of the index: 
 

(a) If the index is based on extensible hashing. 
(b) If the index is based on linear hashing, with a capacity threshold of 100%. Here, we 

define capacity to be (actual number of records indexed) / (maximum number of 
records that can be held by primary buckets). 



 
Problem 4. 
 
To build a hash index for a multi-attribute search key, we can use an approach called 
partitioned hashing. The partitioned hash function is really a list of hash functions, one for 
each attribute in the search key. Suppose that we wish to build a partitioned hash index on 
R(A, B) with 2n buckets numbered 0 to 2n – 1. In this case, the partitioned hash function 
consists of two hash functions hA and hB. Hash function hA takes a value of A as input and 
produces a result with nA bits, and hB takes a value of B as input and produces a result with 
(n – nA) bits. The two results are concatenated together to produce the result of the partitioned 
hash function, which is then used to index the buckets. To locate records with A = a and B = 
b, we simply go directly to the bucket numbered hA(a) hB(b) (in binary). 
 

(a) Which buckets do we have to examine in order to locate all records with A = a? 
(b) Suppose we are given a query mix. Each query in this mix will either ask for records 

with a given value of A, or it will ask for records with a given value of B (but never 
both). With probability p, the value of A will be specified. Give a formula in terms of 
n, nA, and p for the expected number of buckets that must be examined to answer a 
random query from the mix. 

(c) Find the value of nA, as a function of n and p, that minimizes the expected number of 
buckets examined per query. 

 
Problem 5. 
 
Consider the join R  R.A = S.B S, given the following information about the tables to be joined. 
The cost metric is the number of disk I/O’s and the cost of writing out the result should be 
uniformly ignored. 

• R contains 10,000 rows and has 10 rows per page. 
• S contains 2,000 rows and also has 10 rows per page. 
• S.B is a key of S. 
• Both tables are stored compactly on disk in no particular order. 
• No indexes are available. 
• 52 memory blocks are available for query processing. 

 
(a) What is the expected cost of joining R and S using a block-based nested-loop join, 

with R as the outer table? 
(b) What is the expected cost of joining R and S using a block-based nested-loop join, 

with S as the outer table? 
(c) What is the expected cost of joining R and S using a sort-merge join? What is the 

minimum number of memory blocks required for this cost to remain unchanged? 
(d) What is the expected cost of joining R and S using a hash join? What is the minimum 

number of memory blocks required for this cost to remain unchanged? 
 



Problem 6. 
 
The mode of a list of values is the most common (frequent) value. There can be more than one 
mode for a list. For example, the list 1, 2, 2, 3, 4, 4, 2, 1, 1 has two modes 1 and 2. 
 

(a) Assume that no index is available. Design the best algorithm you can come up with to 
compute one mode (any one) of a column in a table. Analyze the worst-case 
performance of your algorithm in terms of number of I/O’s. 

(b) Consider the following query that compute one mode for a subset of a table: 
SELECT mode(r.A) FROM R r WHERE r.B > 0; 
Suppose that there is a B+-tree index on R(A) and a bit-sliced index on R(B); both are 
secondary indexes. What would be a good algorithm for processing this query?  


