CPS 216 Spring 2005
Homework #?2

Assigned: Tuesday, February 15
Due: Thursday, March 3

Problem 1.

Consider the following B*-tree with a maximum fan-out of 4.

50

T

20 60|70 |80

I A A A

For all questions below, assume that you always start with the tree shown above—roz the

result tree you get for the previous question.

(a) Show the result tree after inserting 49.

(b) Show the result tree after deleting 50.

(¢) Show the result tree after inserting 72.

(d) Show the result tree after deleting 5.

(e) What is the minimum number of keys you must delete for this tree to shrink down to
two levels? Show the sequence of deletions.

Problem 2.

The following question is based on the paper “Generalized Search Trees for Database
Systems,” by Hellerstein et al. Suppose we want to use GiST to index ranges of the form {x, y),
where x and y are integers. These ranges may overlap with each other. The queries are of the
form “find all ranges that overlaps with {«, 4).” Discuss briefly how you would implement the
six basic methods required by GiST, and whether you should set IsOrdered to true and define
Compare. Highlight the differences between your implementation and the B"-tree
implementation described in the paper.

Problem 3.

Suppose keys are hashed to 4-bit sequences, and each block can hold three records. We start
with a hash table with two empty blocks (corresponding to 0 and 1), and insert 16 records
with keys 0000, 0001, 0010, ..., 1111, in order. Show the final state of the index:

(a) If the index is based on extensible hashing.

(b) If the index is based on linear hashing, with a capacity threshold of 100%. Here, we
define capacity to be (actual number of records indexed) / (maximum number of
records that can be held by primary buckets).

Problem 4.

To build a hash index for a multi-attribute search key, we can use an approach called
partitioned hashing. The partitioned hash function is really a list of hash functions, one for
each attribute in the search key. Suppose that we wish to build a partitioned hash index on
R(A, B) with 2" buckets numbered 0 to 2" — 1. In this case, the partitioned hash function
consists of two hash functions 4, and /,. Hash function 5, takes a value of A as input and
produces a result with 7, bits, and 5, takes a value of B as input and produces a result with

(n —n,) bits. The two results are concatenated together to produce the result of the partitioned
hash function, which is then used to index the buckets. To locate records with A = z and B =
b, we simply go directly to the bucket numbered 4 ,(z) h4(b) (in binary).

(a) Which buckets do we have to examine in order to locate all records with A = #?

(b) Suppose we are given a query mix. Each query in this mix will either ask for records
with a given value of A, or it will ask for records with a given value of B (but never
both). With probability p, the value of A will be specified. Give a formula in terms of
n, n,, and p for the expected number of buckets that must be examined to answer a
random query from the mix.

(¢) Find the value of 7, as a function of # and p, that minimizes the expected number of
buckets examined per query.

Problem 5.

Consider the join R ><, , _ 5 S, given the following information about the tables to be joined.
The cost metric is the number of disk I/O’s and the cost of writing out the result should be
uniformly ignored.

e R contains 10,000 rows and has 10 rows per page.

e § contains 2,000 rows and also has 10 rows per page.

e SBisakeyofS.

e Both tables are stored compactly on disk in no particular order.

e No indexes are available.

e 52 memory blocks are available for query processing.

(a) What is the expected cost of joining R and § using a block-based nested-loop join,
with R as the outer table?

(b) What is the expected cost of joining R and § using a block-based nested-loop join,
with § as the outer table?

(¢) What is the expected cost of joining R and § using a sort-merge join? What is the
minimum number of memory blocks required for this cost to remain unchanged?

(d) What is the expected cost of joining R and § using a hash join? What is the minimum
number of memory blocks required for this cost to remain unchanged?

Problem 6.

The mode of a list of values is the most common (frequent) value. There can be more than one
mode for a list. For example, the list 1, 2, 2, 3,4, 4, 2, 1, 1 has two modes 1 and 2.

(a) Assume that no index is available. Design the best algorithm you can come up with to
compute one mode (any one) of a column in a table. Analyze the worst-case
performance of your algorithm in terms of number of I/O’s.

(b) Consider the following query that compute one mode for a subset of a table:

SELECT mode(r.A) FROM R r WHERE r.B > 0;
Suppose that there is a B*-tree index on R(A) and a bit-sliced index on R(B); both are
secondary indexes. What would be a good algorithm for processing this query?

