Relational Model & Algebra

CPS 216 Advanced Database Systems

Announcements (January 18)

- ❖ Homework #1 will be assigned on Thursday
- * Reading assignment for this week
 - Posted on course Web page
 - Review due on Thursday night

Relational data model

- * A database is a collection of relations (or tables)
- ❖ Each relation has a list of attributes (or columns)
 - Set-valued attributes not allowed
- ❖ Each attribute has a domain (or type)
- ❖ Each relation contains a set of tuples (or rows)
 - Duplicates not allowed
- ☞ Simplicity is a virtue!

-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
_			
-			
-			
-			
-			
-			
_			

Example

Student

SID	name	age	GPA
142	Bart	10	2.3
123	Milhouse	10	3.1
857	Lisa	8	4.3
456	Ralph	8	2.3

Course

CID	title Advanced Database Systems
CPS230	Analysis of Algorithms
CPS214	Computer Networks

Enroll

Ordering of rows doesn't matter (even though the output is always in *some* order)

Enroll							
SID	CID						
142	CPS216						
142	CPS214						
123	CPS216						
857	CPS216						
857	CPS230						
456	CPS214						

Why did Codd call them "relations"?

Each *n*-tuple relates *n* elements from *n* domains, precisely in the mathematical sense of a "relation"

Schema versus instance

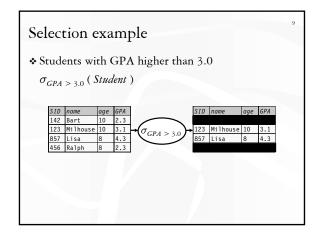
- ❖ Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- **❖** Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to type and object of type in a programming language

Example

- ❖ Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)
- ❖ Instance
 - { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ...}
 - { (CPS216, Advanced Database Systems), ...}
 - { (142, CPS216), (142, CPS214), ...}

Relational algebra operators Core set of operators: Selection, projection, cross product, union, difference, and renaming Additional, derived operators: Join, natural join, intersection, etc.

Selection ❖ Input: a table R ❖ Notation: σ_p (R) • p is called a selection condition/predicate ❖ Purpose: filter rows according to some criteria ❖ Output: same columns as R, but only rows of R that satisfy p



More on selection

- ❖ Selection predicate in general can include any column of R, constants, comparisons such as =, ≤, etc., and Boolean connectives \land , \lor , and \neg
 - Example: straight A students under 18 or over 21 $\sigma_{GPA \, \geq \, 4.0 \, \land \, (age \, < \, 18 \, \lor \, age \, > \, 21)}(\textit{Student} \,)$
- But you must be able to evaluate the predicate over a single row
 - Example: student with the highest GPA $\sigma_{GPA} > 100 \text{ GPA} + 100 \text{ GPA}$ (Student)

Projection

❖ Input: a table R

* Notation: $\pi_L(R)$

• L is a list of columns in R

* Purpose: select columns to output

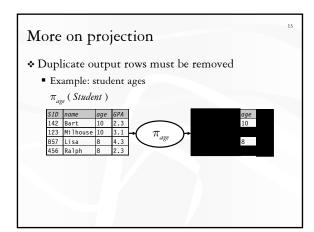
 \diamond Output: same rows, but only the columns in L

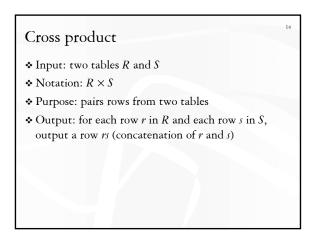
Projection example

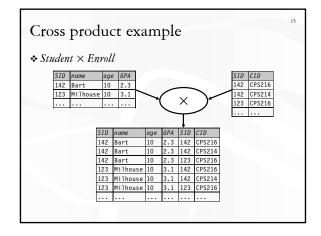
* ID's and names of all students

 $\pi_{SID,\;name}$ (Student)

SID	name	age	GPA		SID	name	
142	Bart	10	2.3		142	Bart	
123	Milhouse	10	3.1	$\rightarrow (\pi_{SID, name})$	123	Milhouse	
857	Lisa	8	4.3	SID, name	857	Lisa	
456	Ralph	8	2.3		456	Ralph	







A note on column ordering

 The ordering of columns in a table is considered unimportant (as is the ordering of rows)

SID	name	age	GPA	SID	CID
142	Bart	10	2.3	142	CPS216
142	Bart	10	2.3	142	CPS214
142	Bart	10	2.3	123	CPS216
123	Milhouse	10	3.1	142	CPS216
123	Milhouse	10	3.1	142	CPS214
123	Milhouse	10	3.1	123	CPS216

	SID	CID	SID	name	age	GPA
	142	CPS216	142	Bart	10	2.3
	142	CPS214	142	Bart	10	2.3
_	123	CPS216	142	Bart	10	2.3
	142	CPS216	123	Milhouse	10	3.1
	142	CPS214	123	Milhouse	10	3.1
	123	CPS216	123	Milhouse	10	3.1

❖ That means cross product is commutative, i.e., $R \times S = S \times R$ for any R and S

Derived operator: join

 \diamond Input: two tables R and S

❖ Notation: $R \bowtie_{p} S$

lacktriangledown problem p is called a join condition/predicate

- Purpose: relate rows from two tables according to some criteria
- ❖ Output: for each row *r* in *R* and each row *s* in *S*, output a row *rs* if *r* and *s* satisfy *p*
- ***** Shorthand for σ_p ($R \times S$)

Join example

❖ Info about students, plus CID's of their courses

 $Student \bowtie_{Student.SID} = Enroll.SID \begin{tabular}{lll} Enroll & Use table.olumn to disambiguate columns if necessary \\ \hline SID & name & age & GPA \\ \hline 142 & Bart & 10 & 2.3 \\ \hline 123 & Milhouse & 10 & 3.1 \\ \hline ... & ... & ... & ... \\ \hline \end{tabular}$

			\triangleleft	1	
SID	name	age	GPA		
142	Bart	10	2.3	142	CPS216
142	Bart	10	2.3	142	CPS214

123	Milhouse	10	3.1	123	CPS216

Derived operator: natural join

 \star Input: two tables R and S

❖ Notation: $R \bowtie S$

* Purpose: relate rows from two tables, and

■ Enforce equality on all common attributes

■ Eliminate one copy of common attributes

❖ Shorthand for π_L ($R \bowtie_p S$)

■ *L* is the union of all attributes from *R* and *S*, with duplicates removed

 \blacksquare p equates all attributes common to R and S

Union

 \diamond Input: two tables R and S

❖ Notation: $R \cup S$

lacksquare R and S must have identical schema

Output:

lacktriangle Has the same schema as R and S

 Contains all rows in R and all rows in S, with duplicates eliminated

Difference \diamond Input: two tables R and S❖ Notation: R - SR and S must have identical schema ❖ Output: Has the same schema as R and S Contains all rows in R that are not found in S Derived operator: intersection \diamond Input: two tables R and S❖ Notation: $R \cap S$ R and S must have identical schema ❖ Output: ■ Has the same schema as *R* and *S* Contains all rows that are in both R and S Renaming ❖ Input: a table R * Notation: ρ_{S} (R), or $\rho_{S(A_{1},A_{2},...)}$ (R) ❖ Purpose: rename a table and/or its columns Output: a renamed table with the same rows as R❖ Used to Avoid confusion caused by identical column names Create identical columns names for natural joins

Renaming example SID's of students who take at least two courses $Enroll \bowtie_{?} Enroll$ $\pi_{SID} (Enroll \bowtie_{\frac{Enroll SID}{Enroll}} = \frac{Enroll SID}{Enroll} + \frac{Enroll CID}{Enroll} = \frac{Enroll}{Enroll}$ $P_{Enroll (SID1, CID1)}$ $P_{Enroll (SID2, CID2)}$ P_{Enroll} P_{Enroll}

Summary of core operators

 \diamond Selection: $\sigma_{_{\!p}}$ (R)

• Projection: $\pi_L(R)$

* Cross product: $R \times S$

❖ Union: $R \cup S$ **❖** Difference: R - S

* Renaming: $\rho_{S(A_1, A_2, ...)}(R)$

■ Does not really add to processing power

Summary of derived operators

 \bullet Join: $R \bowtie_p S$

❖ Natural join: $R \bowtie S$ ❖ Intersection: $R \cap S$

❖ Many more

■ Semijoin, anti-semijoin, quotient, ...

An exercise ❖ CID's of the courses that Lisa is NOT taking A trickier exercise * SID's of students who take exactly one course Monotone operators What happens RelOpAdd more rows to the input... * If some old output rows may be removed ■ Then the operator is non-monotone Otherwise the operator is monotone ■ That is, old output rows remain "correct" when more rows are added to the input ■ Formally, $R \subseteq R'$ implies $RelOp(R) \subseteq RelOp(R')$

Classification of relational operators * Selection: $\sigma_p(R)$ * Projection: $\pi_L(R)$ * Cross product: $R \times S$ ❖ Join: $R \bowtie_{b} S$ ❖ Natural join: $R \bowtie S$ ❖ Union: $R \cup S$ ❖ Difference: R - S❖ Intersection: $R \cap S$ Why is "-" needed for "exactly one"? * Composition of monotone operators produces a monotone query • Old output rows remain "correct" when more rows are added to the input Why do we need core operator X? Difference * Projection ❖ Cross product **❖** Union ❖ Selection? ☺

Why is r.a. a good query language? ❖ Declarative? ■ Yes, compared with older languages like CODASYL ■ Though operators still feel "procedural" ❖ Simple • A small set of core operators who semantics are easy to grasp ❖ Complete? ■ With respect to what? Relational calculus ❖ { $e.SID \mid e \in Enroll \land$ $\neg (\exists e' \in Enroll: e'.SID = e.SID \land e'.CID \neq e.CID \}$ or $\{ e.SID \mid e \in Enroll \land$ $(\forall e' \in Enroll: e'.SID \neq e.SID \lor e'.CID = e.CID \}$ ❖ Relational algebra = "safe" relational calculus • Every query expressible as a safe relational calculus query is also expressible as a relational algebra query And vice versa * Example of an unsafe relational calculus query • $\{ s.name \mid \neg(s \in Student) \}$ Cannot evaluate this query just by looking at the database Turing machine? * Relational algebra has no recursion • Example of something not expressible in relational algebra: Given relation Parent(parent, child), who are Bart's ancestors? Why not recursion? Optimization becomes undecidable You can always implement it at the application level ■ Recursion is added to SQL nevertheless