

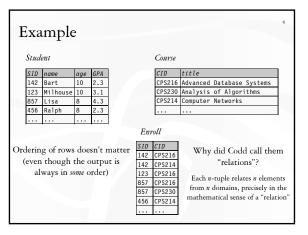
Announcements (January 18)

Homework #1 will be assigned on Thursday

- * Reading assignment for this week
 - Posted on course Web page
 - Review due on Thursday night

Relational data model

- * A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
 Set-valued attributes not allowed
- Each attribute has a domain (or type)
- * Each relation contains a set of tuples (or rows)
 - Duplicates not allowed
- Simplicity is a virtue!



Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- ✤ Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to type and object of type in a programming language

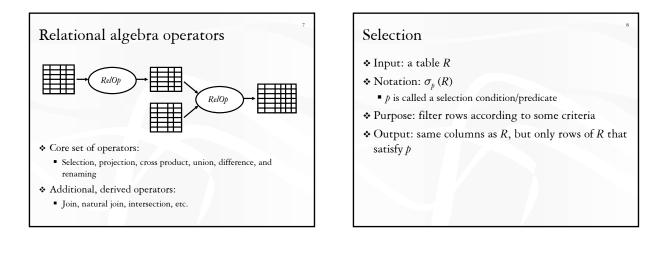
Example

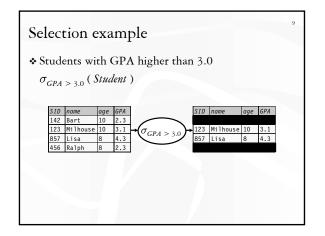
✤ Schema

- Student (SID integer, name string, age integer, GPA float)
- Course (CID string, title string)
- Enroll (SID integer, CID integer)

✤ Instance

- { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ...}
- { (CPS216, Advanced Database Systems), ... }
- { (142, CPS216), (142, CPS214), ...}

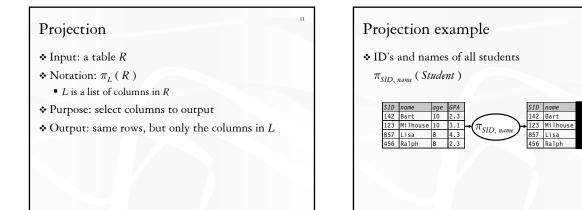




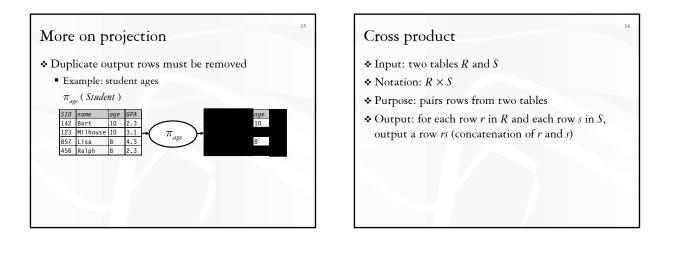
More on selection Selection predicate in general can include any column of *R*, constants, comparisons such as =, ≤, etc., and Boolean connectives ∧, ∨, and ¬ Example: straight A students under 18 or over 21 σ_{GPA} ≥ 4.0 ∧ (age < 18 ∨ age > 21) (Student) But you must be able to evaluate the predicate over a single row

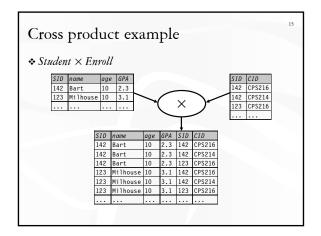
• Example: student with the highest GPA

 $\sigma_{\overline{GPA} \ge all GPA in Student table}$ (Student)



2





A note on column ordering

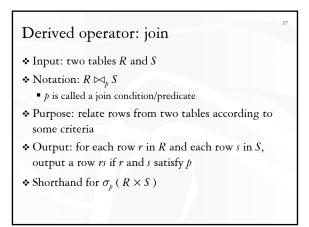
The ordering of columns in a table is considered unimportant (as is the ordering of rows)

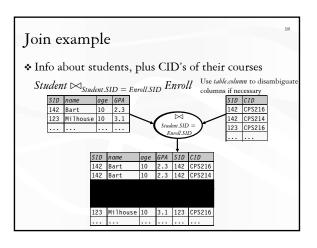
=

	name	age	GPA	SID	CID
142	Bart	10	2.3	142	CPS216
142	Bart	10	2.3	142	CPS214
142	Bart	10	2.3	123	CPS216
123	Milhouse	10	3.1	142	CPS216
123	Milhouse	10	3.1	142	CPS214
123	Milhouse	10	3.1	123	CPS216

	SID	CID	SID	name	age	GPA
	142	CPS216	142	Bart	10	2.3
	142	CPS214	142	Bart	10	2.3
-	123	CPS216	142	Bart	10	2.3
-	142	CPS216	123	Milhouse	10	3.1
	142	CPS214	123	Milhouse	10	3.1
	123	CPS216	123	Milhouse	10	3.1

* That means cross product is commutative, i.e., $R \times S = S \times R$ for any R and S



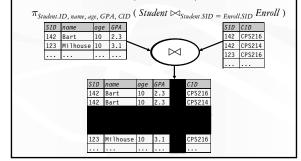


Derived operator: natural join

- \bullet Input: two tables *R* and *S*
- * Notation: $R \bowtie S$
- * Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- ♦ Shorthand for π_L ($R \bowtie_p S$)
 - *L* is the union of all attributes from *R* and *S*, with duplicates removed
 - p equates all attributes common to R and S

Natural join example

* Student \bowtie Enroll = π_2 (Student \bowtie_2 Enroll) =



Union

- * Input: two tables R and S
- * Notation: $R \cup S$
- R and S must have identical schema
- ♦ Output:
 - Has the same schema as R and S
 - Contains all rows in *R* and all rows in *S*, with duplicates eliminated

Difference

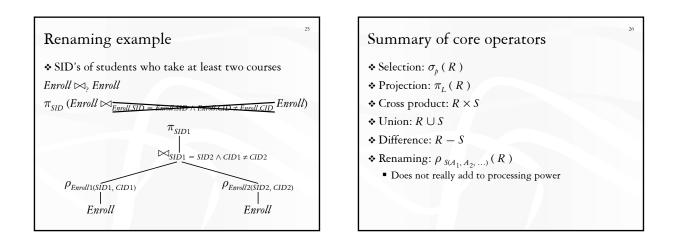
- * Input: two tables R and S
- * Notation: R S
- R and S must have identical schema
- ♦ Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not found in S

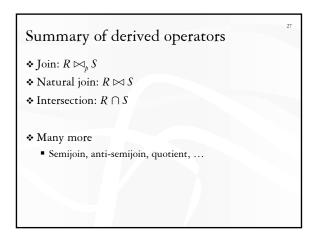
Derived operator: intersection

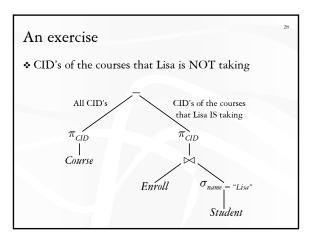
- * Input: two tables R and S
- ♦ Notation: $R \cap S$
 - R and S must have identical schema
- ♦ Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S
- Shorthand for R (R S)
- \diamond Also equivalent to S (S R)
- And to $R \bowtie S$

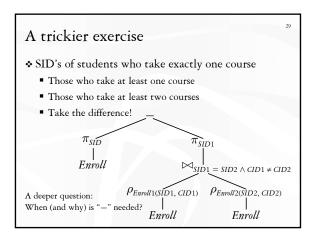
Renaming

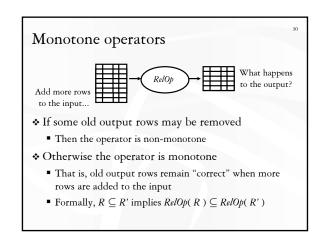
- * Input: a table R
- $\boldsymbol{\diamond}$ Notation: $\rho_{\boldsymbol{S}}\left(\,\boldsymbol{R}\,\right),$ or $\rho_{\boldsymbol{S}(\boldsymbol{A}_{1},\,\boldsymbol{A}_{2},\,\ldots)}\left(\,\boldsymbol{R}\,\right)$
- Purpose: rename a table and/or its columns
- \clubsuit Output: a renamed table with the same rows as R
- ♦ Used to
 - Avoid confusion caused by identical column names
 - Create identical columns names for natural joins











Classification of relational operators

• Selection: σ_p (R)	Monotone			
• Projection: $\pi_L(R)$	Monotone			
* Cross product: $R \times S$	Monotone			
• Join: $R \bowtie_p S$	Monotone			
* Natural join: $R \bowtie S$	Monotone			
♦ Union: $R \cup S$	Monotone			
• Difference: $R - S$	Non-monotone (not w.r.t. S)			
\diamond Intersection: $R \cap S$	Monotone			

Why is "-" needed for "exactly one"?

- Composition of monotone operators produces a monotone query
 - Old output rows remain "correct" when more rows are added to the input
- Exactly-one query is non-monotone
 - Say Nelson is currently taking only CPS216
 - Add another record to Enroll: Nelson takes CPS214 too
 - Nelson is no longer in the answer
- * So it must use difference!

Why do we need core operator *X*?

- Difference
- The only non-monotone operator
- * Projection
 - The only operator that removes columns
- * Cross product
 - The only operator that adds columns
- ✤ Union
 - The only operator that allows you to add rows?
 - A more rigorous proof?
- ♦ Selection? ☺

Why is r.a. a good query language?

- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators still feel "procedural"
- * Simple
 - A small set of core operators who semantics are easy to grasp
- Complete?
 - With respect to what?

Relational calculus

- $\clubsuit \ \{ \ e.SID \ | \ e \in Enroll \ \land$
 - $\neg(\exists e' \in Enroll: e'.SID = e.SID \land e'.CID \neq e.CID) \} \text{ or } \{ e.SID \mid e \in Enroll \land \}$

 $(\forall e' \in Enroll: e'.SID \neq e.SID \lor e'.CID = e.CID)$

- Relational algebra = "safe" relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa
- * Example of an unsafe relational calculus query
 - { s.name $| \neg(s \in Student)$ }
 - · Cannot evaluate this query just by looking at the database

Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation *Parent(parent, child)*, who are Bart's ancestors?
- Why not recursion?
 - Optimization becomes undecidable
 - You can always implement it at the application level
 - Recursion is added to SQL nevertheless