
1

Relational Model & Algebra

CPS 216

Advanced Database Systems

2

Announcements (January 18)

Homework #1 will be assigned on Thursday

Reading assignment for this week
Posted on course Web page

Review due on Thursday night

3

Relational data model

A database is a collection of relations (or tables)

Each relation has a list of attributes (or columns)
Set-valued attributes not allowed

Each attribute has a domain (or type)

Each relation contains a set of tuples (or rows)
Duplicates not allowed

Simplicity is a virtue!

4

Example
Student Course

Enroll

Ordering of rows doesn’t matter
(even though the output is

always in some order)

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
...

CID title
CPS216 Advanced Database Systems
CPS230 Analysis of Algorithms
CPS214 Computer Networks
... ...

SID CID
142 CPS216
142 CPS214
123 CPS216
857 CPS216
857 CPS230
456 CPS214
... ...

Why did Codd call them
“relations”?

Each n-tuple relates n elements
from n domains, precisely in the

mathematical sense of a “relation”

5

Schema versus instance

Schema (metadata)
Specification of how data is to be structured logically

Defined at set-up

Rarely changes

Instance
Content

Changes rapidly, but always conforms to the schema

Compare to type and object of type in a
programming language

6

Example

Schema
Student (SID integer, name string, age integer, GPA float)

Course (CID string, title string)

Enroll (SID integer, CID integer)

Instance
{ h142, Bart, 10, 2.3i, h123, Milhouse, 10, 3.1i, ...}

{ hCPS216, Advanced Database Systemsi, ...}

{ h142, CPS216i, h142, CPS214i, ...}

2

7

Relational algebra operators

Core set of operators:
Selection, projection, cross product, union, difference, and
renaming

Additional, derived operators:
Join, natural join, intersection, etc.

RelOp

RelOp

8

Selection

Input: a table R

Notation: σp (R)
p is called a selection condition/predicate

Purpose: filter rows according to some criteria

Output: same columns as R, but only rows of R that
satisfy p

9

Selection example

Students with GPA higher than 3.0

σGPA > 3.0 (Student)

σGPA > 3.0

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

10

More on selection

Selection predicate in general can include any
column of R, constants, comparisons such as =, ·,
etc., and Boolean connectives ∧, ∨, and ¬

Example: straight A students under 18 or over 21

σGPA ≥ 4.0 ∧ (age < 18 ∨ age > 21) (Student)

But you must be able to evaluate the predicate over
a single row

Example: student with the highest GPA

σGPA ≥ all GPA in Student table (Student)

11

Projection

Input: a table R

Notation: πL (R)
L is a list of columns in R

Purpose: select columns to output

Output: same rows, but only the columns in L

12

Projection example

ID’s and names of all students

πSID, name (Student)

πSID, name

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

3

13

More on projection

Duplicate output rows must be removed
Example: student ages

πage (Student)

πage

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3

14

Cross product

Input: two tables R and S
Notation: R × S

Purpose: pairs rows from two tables

Output: for each row r in R and each row s in S,
output a row rs (concatenation of r and s)

15

Cross product example

Student × Enroll
SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
...

SID CID
142 CPS216
142 CPS214
123 CPS216
... ...

×

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS216
142 Bart 10 2.3 142 CPS214
142 Bart 10 2.3 123 CPS216
123 Milhouse 10 3.1 142 CPS216
123 Milhouse 10 3.1 142 CPS214
123 Milhouse 10 3.1 123 CPS216
...

16

A note on column ordering

The ordering of columns in a table is considered
unimportant (as is the ordering of rows)

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS216
142 Bart 10 2.3 142 CPS214
142 Bart 10 2.3 123 CPS216
123 Milhouse 10 3.1 142 CPS216
123 Milhouse 10 3.1 142 CPS214
123 Milhouse 10 3.1 123 CPS216
...

SID CID SID name age GPA
142 CPS216 142 Bart 10 2.3
142 CPS214 142 Bart 10 2.3
123 CPS216 142 Bart 10 2.3
142 CPS216 123 Milhouse 10 3.1
142 CPS214 123 Milhouse 10 3.1
123 CPS216 123 Milhouse 10 3.1
...

That means cross product is commutative, i.e.,
R × S = S × R for any R and S

=

17

Derived operator: join

Input: two tables R and S

Notation: R p S
p is called a join condition/predicate

Purpose: relate rows from two tables according to
some criteria

Output: for each row r in R and each row s in S,
output a row rs if r and s satisfy p

Shorthand for σp (R × S)

18

Join example

Info about students, plus CID’s of their courses

Student Student.SID = Enroll.SID Enroll
SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
...

SID CID
142 CPS216
142 CPS214
123 CPS216
... ...

×

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS216
142 Bart 10 2.3 142 CPS214
142 Bart 10 2.3 123 CPS216
123 Milhouse 10 3.1 142 CPS216
123 Milhouse 10 3.1 142 CPS214
123 Milhouse 10 3.1 123 CPS216
...

Student.SID =
Enroll.SID

Use table.column to disambiguate
columns if necessary

4

19

Derived operator: natural join

Input: two tables R and S

Notation: R S

Purpose: relate rows from two tables, and
Enforce equality on all common attributes

Eliminate one copy of common attributes

Shorthand for πL (R p S)
L is the union of all attributes from R and S, with
duplicates removed

p equates all attributes common to R and S

20

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
...

SID CID
142 CPS216
142 CPS214
123 CPS216
... ...

×

SID name age GPA SID CID
142 Bart 10 2.3 142 CPS216
142 Bart 10 2.3 142 CPS214
142 Bart 10 2.3 123 CPS216
123 Milhouse 10 3.1 142 CPS216
123 Milhouse 10 3.1 142 CPS214
123 Milhouse 10 3.1 123 CPS216
...

Student.SID =
Enroll.SID

Natural join example

Student Enroll = π? (Student ? Enroll) =

πStudent.ID, name, age, GPA, CID (Student Student.SID = Enroll.SID Enroll)

21

Union

Input: two tables R and S
Notation: R ∪ S

R and S must have identical schema

Output:
Has the same schema as R and S

Contains all rows in R and all rows in S, with duplicates
eliminated

22

Difference

Input: two tables R and S
Notation: R − S

R and S must have identical schema

Output:
Has the same schema as R and S

Contains all rows in R that are not found in S

23

Derived operator: intersection

Input: two tables R and S
Notation: R ∩ S

R and S must have identical schema

Output:
Has the same schema as R and S

Contains all rows that are in both R and S

Shorthand for R − (R − S)

Also equivalent to S − (S − R)

And to R S

24

Renaming

Input: a table R

Notation: ρS (R), or ρS(A1, A2, …) (R)

Purpose: rename a table and/or its columns

Output: a renamed table with the same rows as R

Used to
Avoid confusion caused by identical column names

Create identical columns names for natural joins

5

25

Renaming example

SID’s of students who take at least two courses

Enroll ? Enroll

πSID (Enroll Enroll.SID = Enroll.SID ∧ Enroll.CID ≠ Enroll.CID Enroll)

ρEnroll1(SID1, CID1) ρEnroll2(SID2, CID2)

Enroll Enroll

SID1 = SID2 ∧ CID1 ≠ CID2

πSID1

26

Summary of core operators

Selection: σp (R)

Projection: πL (R)

Cross product: R × S
Union: R ∪ S

Difference: R − S

Renaming: ρ S(A1, A2, …) (R)
Does not really add to processing power

27

Summary of derived operators

Join: R p S

Natural join: R S
Intersection: R ∩ S

Many more
Semijoin, anti-semijoin, quotient, …

28

An exercise

CID’s of the courses that Lisa is NOT taking

CID’s of the courses
that Lisa IS taking

All CID’s
−

πCID

Course

Enroll

Student

σname = “Lisa”

πCID

29

A trickier exercise

SID’s of students who take exactly one course
Those who take at least one course

Those who take at least two courses

Take the difference!

ρEnroll1(SID1, CID1) ρEnroll2(SID2, CID2)

Enroll Enroll

SID1 = SID2 ∧ CID1 ≠ CID2

πSID1πSID

Enroll

−

A deeper question:
When (and why) is “−” needed?

30

Monotone operators

If some old output rows may be removed
Then the operator is non-monotone

Otherwise the operator is monotone
That is, old output rows remain “correct” when more
rows are added to the input

Formally, R ⊆ R’ implies RelOp(R) ⊆ RelOp(R’)

RelOp
Add more rows
to the input...

What happens
to the output?

6

31

Classification of relational operators

Selection: σp (R)

Projection: πL (R)

Cross product: R × S

Join: R p S

Natural join: R S
Union: R ∪ S

Difference: R − S

Intersection: R ∩ S

Monotone

Monotone

Monotone

Monotone

Monotone

Monotone

Non-monotone (not w.r.t. S)

Monotone

32

Why is “−” needed for “exactly one”?

Composition of monotone operators produces a
monotone query

Old output rows remain “correct” when more rows are
added to the input

Exactly-one query is non-monotone
Say Nelson is currently taking only CPS216

Add another record to Enroll: Nelson takes CPS214 too

Nelson is no longer in the answer

So it must use difference!

33

Why do we need core operator X?

Difference
The only non-monotone operator

Projection
The only operator that removes columns

Cross product
The only operator that adds columns

Union
The only operator that allows you to add rows?
A more rigorous proof?

Selection? ☺

34

Why is r.a. a good query language?

Declarative?
Yes, compared with older languages like CODASYL

Though operators still feel “procedural”

Simple
A small set of core operators who semantics are easy to
grasp

Complete?
With respect to what?

35

Relational calculus

{ e.SID | e ∈ Enroll ∧
¬(∃e’ ∈ Enroll: e’.SID = e.SID ∧ e’.CID ≠ e.CID)} or

{ e.SID | e ∈ Enroll ∧
(∀e’ ∈ Enroll: e’.SID ≠ e.SID ∨ e’.CID = e.CID)}

Relational algebra = “safe” relational calculus
Every query expressible as a safe relational calculus query is also
expressible as a relational algebra query

And vice versa

Example of an unsafe relational calculus query
{ s.name | ¬(s ∈ Student) }

Cannot evaluate this query just by looking at the database

36

Turing machine?

Relational algebra has no recursion
Example of something not expressible in relational
algebra: Given relation Parent(parent, child), who are
Bart’s ancestors?

Why not recursion?
Optimization becomes undecidable

You can always implement it at the application level

Recursion is added to SQL nevertheless

