

Announcements (January 20)

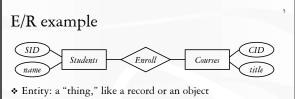
- Review for Codd paper due tonight via email
 Follow instructions on course Web site
- Reading assignment for next week (Ailamaki et al., VLDB 2001) has been posted
 - Due next Wednesday night
- Homework #1 assigned today
 - Expect an email regarding your DB2 account today
 - Due February 8 (in 2 1/2 weeks)
- * Course project will be assigned next week

Database (schema) design

- Understand the real-world domain being modeled
- * Specify it using a database design model
 - Design models are especially convenient for schema design, but are not necessarily implemented by DBMS
 - Popular ones include
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL)
- * Translate the design to the data model of DBMS
 - Relational, XML, object-oriented, etc.
- * Apply database design theory to check the design
- ✤ Create DBMS schema

Entity-relationship (E/R) model

- Historically very popular
 - Primarily a design model; not implemented by any major DBMS nowadays
- Can think of as a "watered-down" object-oriented design model
- * E/R diagrams represent designs



- Entity set (rectangle): a collection of things of the same type, like a relation of tuples or a class of objects
- $\boldsymbol{\diamond}$ Relationship: an association among two or more entities
- Relationship set (diamond): a set of relationships of the same type; an association among two or more entity sets
- Attributes (ovals): properties of entities or relationships, like attributes of tuples or objects

ODL (Object Definition Language)

- Standardized by ODMG (Object Data Management Group)
 - Comes with a declarative query language OQL (Object Query Language)
 - Implemented by OODBMS (Object-Oriented DataBase Management Systems)
- * Object oriented
- ✤ Based on C⁺⁺ syntax
- * Class declarations represent designs

ODL example

```
class Student {
   attribute integer SID;
   attribute string name;
   relationship Set<Course> enrolledIn inverse Course::students;
};
class Course {
   attribute string CID;
   attribute string title;
   relationship Set<Student> students inverse Student::enrolledIn;
};
```

\bullet Easy to map them to C⁺⁺ classes

- ODL attributes correspond to attributes of objects; complex types are allowed
- ODL relationships can be mapped to pointers to other objects (e.g., Set<Course> → set of pointers to objects of Course class)

Not covered in this lecture

- * E/R and ODL design
- Translating E/R and ODL designs into relational designs
- \mathcal{F} Reference book (GMUW) has all the details
- * Next: relational design theory

Relational model: review

- * A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
- * Each relation contains a set of tuples (or rows)

Keys

- A set of attributes K is a key for a relation R if
 - In no instance of R will two different tuples agree on all attributes of K

10

12

- That is, K is a "tuple identifier"
- No proper subset of K satisfies the above condition
 That is, K is minimal
- Example: Student (SID, name, age, GPA)
 - SID is a key of Student
 - {SID, name} is not a key (not minimal)

ochema vs. d	ata Stud	ent				
	SID	name	age	GPA		
	142	Bart	10	2.3		
	123	Milhouse	10	3.1		
	857	Lisa	8	4.3		
	456	Ralph	8	2.3		
• Is <i>name</i> a key of	Stud	ent?				

More examples of keys

- ✤ Enroll (SID, CID)
- ✤ Address (street_address, city, state, zip)
- Course (CID, title, room, day_of_week, begin_time, end_time)

Usage of keys

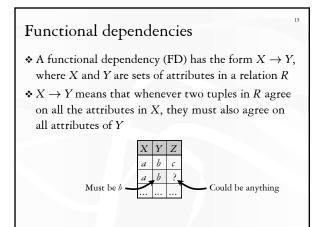
- * More constraints on data, fewer mistakes
- * Look up a row by its key value
 - Many selection conditions are "key = value"

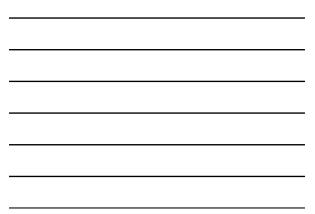
13

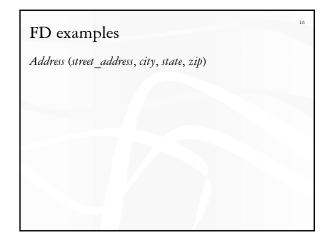
- ✤ "Pointers"
 - Example: Enroll (SID, CID)
 - SID is a key of Student
 - CID is a key of Course
 - An Enroll tuple "links" a Student tuple with a Course tuple
 - Many join conditions are "key = key value stored in another table"

	SID	name	CID		
	142	Bart	CPS216		
	142	Bart	CPS214		
	857	Lisa	CPS216		
	857	Lisa	CPS230		
* Why is this	design is ba	d?			
U	n has redunda nultiple times,				
✤ Why is redu		2			

- removing redundancy in designs?
- Dependencies, decompositions, and normal forms







Keys redefined using FD's

- A set of attributes K is a key for a relation R if
- $\bigstar K \rightarrow$ all (other) attributes of R
 - That is, *K* is a "super key"
- * No proper subset of K satisfies the above condition

17

18

• That is, K is minimal

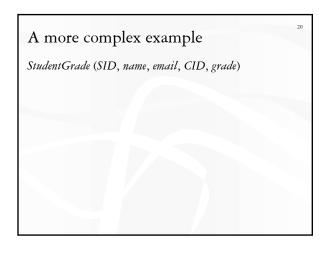
Reasoning with FD's

Given a relation R and a set of FD's ${\mathcal F}$

- \bullet Does another FD follow from \mathcal{F} ?
 - Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
- \bullet Is K a key of R?
 - What are all the keys of *R*?

Attribute closure

- * Given R, a set of FD's \mathcal{F} that hold in R, and a set of attributes Z in R: The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes functionally determined by Z
- * Algorithm for computing the closure
 - Start with closure = Z
 - If $X \to Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

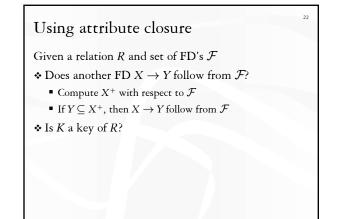


Example of computing closure

21

 ${\boldsymbol{\ast}} \; {\mathcal{F}} \, {\rm includes} :$

- SID \rightarrow name, email
- $email \rightarrow SID$
- SID, CID \rightarrow grade
- $\{ CID, email \}^+ = ?$
- \bullet email \rightarrow SID
 - Add SID; closure is now { CID, email, SID }
- $\texttt{SID} \rightarrow \textit{name}, \textit{email}$
 - Add name, email; closure is now { CID, email, SID, name }
- \Leftrightarrow SID, CID \rightarrow grade
 - Add grade; closure is now all the attributes in StudentGrade



Useful rules of FD's

- * Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z

23

24

- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$

Non-key FD's

♦ Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key

• Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

The fact that a is always associated with b is recorded in multiple rows: redundancy!

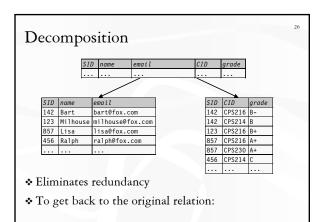
Example of redundancy

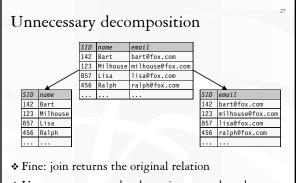
* StudentGrade (SID, name, email, CID, grade)

 \Rightarrow SID \rightarrow name, email

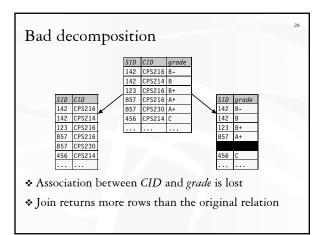
142	Bart	bart@fox.com	CPS216 CPS214		
	Bart				
123					
357	Lisa			A+	
357	Lisa	Lisa lisa@fox.com		A+	
456	Ralph	ralph@fox.com	.com CPS214		

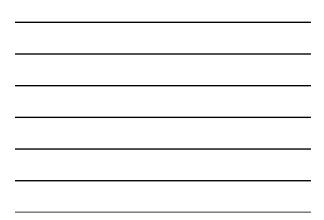
25

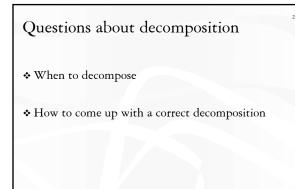




Unnecessary: no redundancy is removed, and now SID is stored twice!







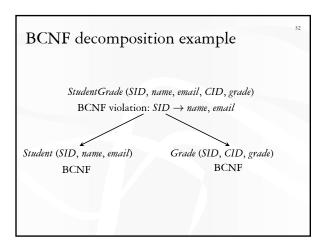
30

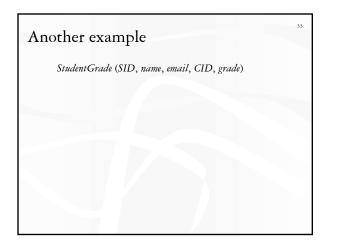
An answer: BCNF

- A relation *R* is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \to Y$ in R, X is a super key
 - That is, all FDs follow from "key \rightarrow other attributes"
- * When to decompose
 - As long as some relation is not in BCNF
- * How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it is guaranteed to be a correct decomposition!

BCNF decomposition algorithm

- * Find a BCNF violation
 - That is, a non-trivial FD $X \to Y$ in R where X is not a super key of R
- * Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- * Repeat until all relations are in BCNF





Recap

- Functional dependencies: generalization of keys
- * Non-key functional dependencies: a source of redundancy

34

- BCNF decomposition: a method of removing redundancies due to FD's
- BCNF: schema in this normal form has no redundancy due to FD's
- ☞ Not covered in this lecture: many other types of dependencies (e.g., MVD) and normal forms (e.g., 4NF)
 - GMUW has all the details
 - Relational design theory was a big research area in the 1970's, but there is not much going on now