Relational Database Design

CPS 216

Advanced Database Systems

Announcements (January 20)

% Review for Codd paper due tonight via email

= Follow instructions on course Web site

% Reading assignment for next week (Ailamaki et al.,
VLDB 2001) has been posted

® Due next Wednesday night

< Homework #1 assigned today
® Expect an email regarding your DB2 account today
® Due February 8 (in 2 V> weeks)

< Course project will be assigned next week

Database (schema) design

< Understand the real-world domain being modeled
% Specify it using a database design model

= Design models are especially convenient for schema
design, but are not necessarily implemented by DBMS

= Popular ones include
¢ Entity/Relationship (E/R) model
¢ Object Definition Language (ODL)
% Translate the design to the data model of DBMS
= Relational, XML, object-oriented, etc.
< Apply database design theory to check the design
% Create DBMS schema

Entity-relationship (E/R) model

< Historically very popular

® Primarily a design model; not implemented by any major
DBMS nowadays

% Can think of as a “watered-down” object-oriented
design model

< E/R diagrams represent designs

E/R example

e T e o
CaameD Citle D

< Entity: a “thing,” like a record or an object

< Entity set (rectangle): a collection of things of the same
type, like a relation of tuples or a class of objects

% Relationship: an association among two or more entities

< Relationship set (diamond): a set of relationships of the
same type; an association among two Or more entity sets

< Attributes (ovals): properties of entities or relationships, like
attributes of tuples or objects

ODL (Object Definition Language)

% Standardized by ODMG (Object Data Management
Group)
® Comes with a declarative query language OQL (Object
Query Language)
= Implemented by OODBMS (Object-Oriented DataBase
Management Systems)

< Object oriented
Based on C*™ syntax

+ Class declarations represent designs

ODL example

class Student {
attribute integer SID;
attribute string name;
relationship Set<Course> enrolledIn inverse Course::students;

class Course {
attribute string CID;
attribute string title;
relationship Set<Student> students inverse Student::enrolledIn;

% Easy to map them to C* ™ classes
® ODL attributes correspond to attributes of objects;
complex types are allowed

= ODL relationships can be mapped to pointers to other
objects (e.g., Set<Course> — set of pointers to objects
of Course class)

Not covered in this lecture

< E/R and ODL design

< Translating E/R and ODL designs into relational
designs

@ Reference book (GMUW) has all the details

< Next: relational design theory

Relational model: review

% A database is a collection of relations (or tables)
% Each relation has a list of attributes (or columns)
< Each attribute has a domain (or type)

< Each relation contains a set of tuples (or rows)

10

Keys

< A set of attributes K is a key for a relation R if

® In no instance of R will two different tuples agree on all
attributes of K

¢ That is, K is a “tuple identifier”
= No proper subset of K satisfies the above condition
® That is, K is minimal
< Example: Student (SID, name, age, GPA)
= SID is a key of Student

= {SID, name} is not a key (not minimal)

Schema vs. data

Student

SID |name age |G
142 |Bart 10 |2
123 |Milhouse|10 |3.
4
2

857 |Lisa 8
456 |Ralph 8

% Is name a key of Studenr?

More examples of keys

< Enroll (SID, CID)

< Address (street_addess, city, state, zip)

< Course (CID, title, room, day_of week, begin_time, end_time)

Usage of keys

% More constraints on data, fewer mistakes
< Look up a row by its key value
= Many selection conditions are “key = value”

2
o

Pointers”
= Example: Enroll (SID, CID)
¢ SID is a key of Student
® CID is a key of Course
® An Enroll tuple “links” a Student tuple with a Course tuple

= Many join conditions are “key = key value stored in
another table”

Motivation for a design theory

SID |name CID

142 |Bart CPS216
142 |Bart CPsS214
857 |[Lisa CPS216
857 |Lisa CPS230

% Why is this design is bad?
= This design has redundancy, because the name of a student is
recorded multiple times, once for each course the student is taking

% Why is redundancy bad?

< How about a systematic approach to detecting and
removing redundancy in designs?

= Dependencies, decompositions, and normal forms

Functional dependencies

< A functional dependency (FD) has the form X — Y,
where X and Y are sets of attributes in a relation R

< X — Y means that whenever two tuples in R agree
on all the attributes in X, they must also agree on
all attributes of Y

X\|Y|Z
a|b|c
alb |2y
Must be & =t N Could be anything

FD examples

Addyess (streetr_address, city, state, zip)

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
% K — all (other) attributes of R
® That is, K is a “super key”
< No proper subset of K satisfies the above condition

® That is, K is minimal

Reasoning with FD’s

Given a relation R and a set of FD’s F
% Does another FD follow from F?

= Are some of the FD’s in F redundant (i.e., they follow
from the others)?

% Is K a key of R?
= What are all the keys of R?

Attribute closure

% Given R, a set of FD’s F that hold in R, and a set of
attributes Z in R:
The closure of Z (denoted Z™) with respect to F is
the set of all attributes functionally determined by Z
< Algorithm for computing the closure
® Start with closure = Z

= If X — Yis in F and X is already in the closure, then
also add Y to the closure

® Repeat until no more attributes can be added

20

A more complex example

StudentGrade (SID, name, email, CID, grade)

Example of computing closure

< F includes:
® SID — name, email
= email — SID
= SID, CID — grade
<« { CID, email }+ = ?
% email — SID
= Add SID; closure is now { CID, email, SID }
& SID — name, email
= Add name, email; closure is now { CID, email, SID, name }
% SID, CID — grade

® Add grade; closure is now all the attributes in StudentGrade

22

Using attribute closure

Given a relation R and set of FD’s F
% Does another FD X — Y follow from F?

= Compute Xt with respect to F
= [fY C X*, then X — Y follow from F
% Is K a key of R?

Useful rules of FD’s

% Armstrong’s axioms
= Reflexivity: If Y C X, then X =Y
= Augmentation: If X — Y, then XZ — YZ for any Z
® Transitivity: f X =+ Yand Y — Z, then X — Z
% Rules derived from axioms
= Splitting: If X -+ YZ, then X -+ Yand X -+ Z
= Combining: If X = Yand X = Z, then X = YZ

Non-key FD’s

% Consider a non-trivial FD X — Y where X is not a
super key

= Since X is not a super key, there are some attributes (say
Z) that are not functionally determined by X

X\|\Y|Z
al|b|cl
al|b|c2

The fact that « is always associated with
is recorded in multiple rows: redundancy!

Example of redundancy

% StudentGrade (SID, name, email, CID, grade)
% SID — name, email

SID |name email CID grade
142 [Bart bart@fox.com CPS216 |B-
142 |Bart bart@fox.com CPS214 (8B

123 [Milhouse |milhouse@fox.com|CPS216 B+
857 |Lisa lisa@fox.com CPS216 [A+
857 |Lisa lisa@fox.com CPS230 [A+
456 |Ralph ralph@fox.com CPS214|C

26

Decomposition
[s1D Tname [email [c10 grade |

SID |name email SID [CID grade

142 |Bart bart@fox.com 142 |CPS216 [B-

123 |Milhouse |milhouse@fox.com 142 |CPS214|B

857 |Lisa lisa@fox.com 123 |CPS216 B+

456 |Ralph ralph@fox.com 857 |CPS216 [A+
857 |CPS230 A+
456 |CPS214|C

+ Eliminates redundancy

< To get back to the original relation:

N
§

Unnecessary decomposition

SID |name email
142 |Bart bart@fox.com
123 [Milhouse |milhouse@fox.com

857 |Lisa lisa@fox.com
456 |Ralph ralph@fox.com

SID |name SID |email

142 [Bart 142 |bart@fox.com

123 |Milhouse 123 |miThouse@fox.com
857 |Lisa 857 |1isaGfox.com

456 [Ralph 456 [ralph@fox.com

% Fine: join returns the original relation

% Unnecessary: no redundancy is removed, and now
SID is stored twice!

28

Bad decomposition

SID [CID grade
142 [CPS216|B-

142 |CPS214|B
123 [CPS216 |B+

SID |CID 857 [CPS216 |A+ SID |grade
142 [cPs216 857 [CPS230 [A+ 142 [B-
142 |CPS214 456 |CPS214|C 142 |8
123 [CPS216 123 B+
857 |CPS216 857 A+
857 [CPS230

456 |CPS214

< Association between CID and grade is lost

+ Join returns more rows than the original relation

29

Questions about decomposition

< When to decompose

< How to come up with a correct decomposition

An answer: BCNF

% A relation R is in Boyce-Codd Normal Form if
® For every non-trivial FD X — Yin R, X is a super key
® That is, all FDs follow from “key — other attributes”

< When to decompose
= As long as some relation is not in BCNF

< How to come up with a correct decomposition
= Always decompose on a BCNF violation

“ Then it is guaranteed to be a correct decomposition!

BCNF decomposition algorithm

% Find a BCNF violation

® That is, a non-trivial FD X — Y'in R where X is not a

super key of R

< Decompose R into R, and R,, where
= R, has attributes X UY

= R, has attributes X U Z, where Z contains all attributes

of R that are in neither X nor Y’

< Repeat until all relations are in BCNF

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)
BCNEF violation: SID — name, email

Student (SID, name, email) Grade (SID, CID, grade)
BCNF BCNF

Another example

StudentGrade (SID, name, email, CID, grade)

Recap

< Functional dependencies: generalization of keys

< Non-key functional dependencies: a source of redundancy

< BCNF decomposition: a method of removing redundancies
due to FD’s

< BCNF: schema in this normal form has no redundancy due
to FD’s

@ Not covered in this lecture: many other types of
dependencies (e.g., MVD) and normal forms (e.g., 4NF)

* GMUW has all the details

® Relational design theory was a big research area in the 1970’s, but
there is not much going on now

