Relational Database Design

CPS 216
Advanced Database Systems

Database (schema) design

* Understand the real-world domain being modeled
$*$ Specify it using a database design model
- Design models are especially convenient for schema design, but are not necessarily implemented by DBMS
- Popular ones include
- Entity/Relationship (E/R) model
- Object Definition Language (ODL)

Translate the design to the data model of DBMS

- Relational, XML, object-oriented, etc.
* Apply database design theory to check the design
* Create DBMS schema

E/R example

* Entity: a "thing," like a record or an object
\because Entity set (rectangle): a collection of things of the same type, like a relation of tuples or a class of objects
* Relationship: an association among two or more entities
* Relationship set (diamond): a set of relationships of the same type; an association among two or more entity sets
* Attributes (ovals): properties of entities or relationships, like attributes of tuples or objects

Announcements (January 20)

* Review for Codd paper due tonight via email
- Follow instructions on course Web site
* Reading assignment for next week (Ailamaki et al., $V L D B 2001$) has been posted
- Due next Wednesday night
* Homework \#1 assigned today
- Expect an email regarding your DB2 account today
- Due February 8 (in $21 / 2$ weeks)
* Course project will be assigned next week

Entity-relationship (E/R) model

$\not \approx$ Historically very popular

- Primarily a design model; not implemented by any major DBMS nowadays
* Can think of as a "watered-down" object-oriented design model
* E/R diagrams represent designs

ODL (Object Definition Language)

* Standardized by ODMG (Object Data Management Group)
- Comes with a declarative query language OQL (Object Query Language)
- Implemented by OODBMS (Object-Oriented DataBase Management Systems)
* Object oriented
* Based on C^{++}syntax
* Class declarations represent designs

ODL example

class Student \{
attribute integer SID;
attribute string name;
relationship Set<Course> enrolledIn inverse Course::students;
\};
lass Course \{
attribute string CID;
attribute string title;
relationship Set<Student> students inverse Student::enrolledIn;
\};

* Easy to map them to C^{++}classes
- ODL attributes correspond to attributes of objects; complex types are allowed
- ODL relationships can be mapped to pointers to other objects (e.g., Set<Course> \rightarrow set of pointers to objects of Course class)

Relational model: review

* A database is a collection of relations (or tables)
* Each relation has a list of attributes (or columns)
$*$ Each attribute has a domain (or type)
$*$ Each relation contains a set of tuples (or rows)

Not covered in this lecture

*/R and ODL design

* Translating E/R and ODL designs into relational designs
σ Reference book (GMUW) has all the details

Next: relational design theory
4- Next: relational den

Usage of keys

\star More constraints on data, fewer mistakes

* Look up a row by its key value
- Many selection conditions are "key = value"
\% "Pointers"
- Example: Enroll (SID, CID)
- SID is a key of Student
- CID is a key of Course
- An Enroll tuple "links" a Student tuple with a Course tuple
- Many join conditions are "key = key value stored in another table"

Motivation for a design theory

SID	name	CID
142	Bart	CPS216
142	Bart	CPS214
857	Lisa	CPS216
857	Lisa	CPS230
\ldots	\ldots	\ldots

* Why is this design is bad?
- This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
* Why is redundancy bad?
- Wastes space, complicates updates, and promotes inconsistency
* How about a systematic approach to detecting and removing redundancy in designs?
- Dependencies, decompositions, and normal forms

Functional dependencies

* A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
$* X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes of Y

FD examples

Address (street_address, city, state, zip)

* street_address, city, state $\rightarrow z i p$
* zip \rightarrow city, state
* zip, state $\rightarrow z i p$?
- This is a trivial FD
- Trivial FD: LHS \supseteq RHS
* zip \rightarrow state, zip?
- This is non-trivial, but not completely non-trivial
- Completely non-trivial FD: LHS \cap RHS $=\varnothing$

Keys redefined using FD's

A set of attributes K is a key for a relation R if
$\star K \rightarrow$ all (other) attributes of R

- That is, K is a "super key"
$*$ No proper subset of K satisfies the above condition
- That is, K is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

* Does another FD follow from \mathcal{F} ?
- Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
* Is K a key of R ?
- What are all the keys of R ?

Attribute closure

\star Given R, a set of FD's \mathcal{F} that hold in R, and a set of attributes Z in R :
The closure of Z (denoted Z^{+}) with respect to \mathcal{F} is the set of all attributes functionally determined by Z

* Algorithm for computing the closure
- Start with closure $=Z$
- If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
- Repeat until no more attributes can be added

A more complex example

StudentGrade (SID, name, email, CID, grade)
*SID \rightarrow name, email

* email \rightarrow SID
*SID, CID \rightarrow grade
ϖ Not a good design, and we will see why later

Example of computing closure

* \mathcal{F} includes:
- SID \rightarrow name, email
- email \rightarrow SID
- SID, CID \rightarrow grade
* $\{\text { CID, email }\}^{+}=$?
* email \rightarrow SID
- Add SID; closure is now $\{$ CID , email, SID $\}$
* SID \rightarrow name, email
- Add name, email; closure is now \{ CID, email, SID, name \}
- SID , CID \rightarrow grade
- Add grade; closure is now all the attributes in StudentGrade

Useful rules of FD's

* Armstrong's axioms

- Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
- Augmentation: If $X \rightarrow Y$, then $X Z \rightarrow Y Z$ for any Z
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
* Rules derived from axioms
- Splitting: If $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y Z$

Non-key FD's

\star Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key

- Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

X	Y	Z
a	b	$c 1$
a	b	$c 2$
\ldots	\ldots	\ldots

The fact that a is always associated with b is recorded in multiple rows: redundancy!

Example of redundancy

$*$ StudentGrade (SID, name, email, CID, grade)
*SID \rightarrow name, email

SID	name	email	CID	grade
142	Bart	bart@fox.com	CPS216	B-
142	Bart	bart@fox.com	CPS214	B
123	Milhouse	milhouse@fox.com	CPS216	B +
857	Lisa	1isa@fox.com	CPS216	A+
857	Lisa	lisa@fox.com	CPS230	A+
456	Ralph	ralph@fox.com	CPS214	C
\ldots	\ldots	\ldots	\ldots	\ldots

Unnecessary decomposition

$*$ Fine: join returns the original relation

* Unnecessary: no redundancy is removed, and now SID is stored twice!

Decomposition

Eliminates redundancy
. To get back to the original relation: \bowtie

Bad decomposition

* Association between CID and grade is lost
* Join returns more rows than the original relation

Questions about decomposition	
$*$ When to decompose	
$*$ How to come up with a correct decomposition	

Questions about decomposition

*When to decompose

* How to come up with a correct decomposition

An answer: BCNF

* A relation R is in Boyce-Codd Normal Form if
- For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
- That is, all FDs follow from "key \rightarrow other attributes"
* When to decompose
- As long as some relation is not in BCNF
* How to come up with a correct decomposition
- Always decompose on a BCNF violation
*Then it is guaranteed to be a correct decomposition!

BCNF decomposition algorithm

* Find a BCNF violation
- That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
\star Decompose R into R_{1} and R_{2}, where
- R_{1} has attributes $X \cup Y$
- R_{2} has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
\nLeftarrow Repeat until all relations are in BCNF

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)

Recap

* Functional dependencies: generalization of keys
* Non-key functional dependencies: a source of redundancy
* BCNF decomposition: a method of removing redundancies due to FD's
$*$ BCNF: schema in this normal form has no redundancy due to FD's
σ Not covered in this lecture: many other types of dependencies (e.g., MVD) and normal forms (e.g., 4NF)
- GMUW has all the details
- Relational design theory was a big research area in the 1970's, but there is not much going on now

