Relational Database Design

CPS 216 Advanced Database Systems

Announcements (January 20)

- * Review for Codd paper due tonight via email
 - Follow instructions on course Web site
- ❖ Reading assignment for next week (Ailamaki et al., *VLDB* 2001) has been posted
 - Due next Wednesday night
- ❖ Homework #1 assigned today
 - Expect an email regarding your DB2 account today
 - Due February 8 (in 2 ½ weeks)
- ❖ Course project will be assigned next week

Database (schema) design

- Understand the real-world domain being modeled
- * Specify it using a database design model
 - Design models are especially convenient for schema design, but are not necessarily implemented by DBMS
 - Popular ones include
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL)
- * Translate the design to the data model of DBMS
 - Relational, XML, object-oriented, etc.
- * Apply database design theory to check the design
- * Create DBMS schema

Entity-relationship (E/R) model

- * Historically very popular
 - Primarily a design model; not implemented by any major DBMS nowadays
- Can think of as a "watered-down" object-oriented design model
- * E/R diagrams represent designs

E/R example

- * Entity: a "thing," like a record or an object
- Entity set (rectangle): a collection of things of the same type, like a relation of tuples or a class of objects
- * Relationship: an association among two or more entities
- Relationship set (diamond): a set of relationships of the same type; an association among two or more entity sets
- Attributes (ovals): properties of entities or relationships, like attributes of tuples or objects

ODL (Object Definition Language)

- Standardized by ODMG (Object Data Management Group)
 - Comes with a declarative query language OQL (Object Query Language)
 - Implemented by OODBMS (Object-Oriented DataBase Management Systems)
- * Object oriented
- ❖ Based on C⁺⁺ syntax
- Class declarations represent designs

2

ODL example

```
class Student {
   attribute integer SID;
   attribute string name;
   relationship Set<Course> enrolledIn inverse Course::students;
};
class Course {
   attribute string CID;
   attribute string title;
   relationship Set<Student> students inverse Student::enrolledIn;
```

- ❖ Easy to map them to C⁺⁺ classes
 - ODL attributes correspond to attributes of objects; complex types are allowed
 - ODL relationships can be mapped to pointers to other objects (e.g., Set<Course> → set of pointers to objects of Course class)

Not covered in this lecture

- ❖ E/R and ODL design
- Translating E/R and ODL designs into relational designs
- @ Reference book (GMUW) has all the details
- * Next: relational design theory

Relational model: review

- ❖ A database is a collection of relations (or tables)
- ❖ Each relation has a list of attributes (or columns)
- * Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)

Keys

- A set of attributes K is a key for a relation R if
 - In no instance of R will two different tuples agree on all attributes of K
 - That is, K is a "tuple identifier"
 - No proper subset of *K* satisfies the above condition
 - \bullet That is, K is minimal
- ❖ Example: Student (SID, name, age, GPA)
 - SID is a key of Student
 - {SID, name} is not a key (not minimal)

Schema vs. data

Student

SID	name	age	GPA
142	Bart	10	2.3
123	Milhouse	10	3.1
857	Lisa	8	4.3
456	Ralph	8	2.3

- * Is name a key of Student?
 - Yes? Seems reasonable for this instance
 - No! Student names are not unique in general
- * Key declarations are part of the schema

More examples of keys

- * Enroll (SID, CID)
 - {SID, CID}
- * Address (street address, city, state, zip)
 - {street_address, city, state}
 - {street_address, zip}
- * Course (CID, title, room, day_of_week, begin_time, end_time)
 - {CID, day_of_week, begin_time}
 - {CID, day_of_week, end_time}
 - {room, day_of_week, begin_time}
 - {room, day_of_week, end_time}
 - *Not a good design, and we will see why later

Usage of keys

- ❖ More constraints on data, fewer mistakes
- * Look up a row by its key value
 - Many selection conditions are "key = value"
- "Pointers"
 - Example: Enroll (SID, CID)
 - SID is a key of Student
 - · CID is a key of Course
 - An Enroll tuple "links" a Student tuple with a Course tuple
 - Many join conditions are "key = key value stored in another table"

Motivation for a design theory

SID	name	CID
142	Bart	CPS216
142	Bart	CPS214
857	Lisa	CPS216
857	Lisa	CPS230

- * Why is this design is bad?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- * Why is redundancy bad?
 - Wastes space, complicates updates, and promotes inconsistency
- * How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \to Y$, where X and Y are sets of attributes in a relation R
- $\star X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes of Y

FD examples

Address (street_address, city, state, zip)

- \star street address, city, state \rightarrow zip
- \Rightarrow zip \rightarrow city, state
- \star zip, state \rightarrow zip?
 - This is a trivial FD
 - Trivial FD: LHS ⊃ RHS
- \Rightarrow zip \rightarrow state, zip?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FD's

A set of attributes K is a key for a relation R if

- $\star K \rightarrow \text{all (other) attributes of } R$
 - That is, K is a "super key"
- ❖ No proper subset of *K* satisfies the above condition
 - That is, K is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- \diamond Does another FD follow from \mathcal{F} ?
 - lacksquare Are some of the FD's in $\mathcal F$ redundant (i.e., they follow from the others)?
- \star Is K a key of R?
 - What are all the keys of *R*?

Attribute closure

 \diamond Given R, a set of FD's \mathcal{F} that hold in R, and a set of attributes Z in R:

The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes functionally determined by Z

- ❖ Algorithm for computing the closure
 - Start with closure = Z
 - If $X \to Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

StudentGrade (SID, name, email, CID, grade)

- ❖ SID → name, email
- ❖ email → SID
- ❖ SID, CID \rightarrow grade
- Thot a good design, and we will see why later

Example of computing closure

- ❖ F includes:
 - SID → name, email
 - email → SID
 - SID, CID → grade
- $All \{CID, email\}^+ = ?$
- \bullet email \rightarrow SID
 - Add SID; closure is now { CID, email, SID }
- ❖ SID → name, email
 - Add name, email; closure is now { CID, email, SID, name }
- \star SID, CID \rightarrow grade
 - Add grade; closure is now all the attributes in StudentGrade

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- ❖ Does another FD $X \to Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to $\mathcal F$
 - If $Y \subseteq X^+$, then $X \to Y$ follow from \mathcal{F}
- \star Is K a key of R?
 - Compute K^+ with respect to $\mathcal F$
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that *K* is *minimal* (how?)

Useful rules of FD's

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- * Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$

Non-key FD's

- **\diamond** Consider a non-trivial FD $X \to Y$ where X is not a
 - Since *X* is not a super key, there are some attributes (say Z) that are not functionally determined by X

X	Y	Z
а	b	с 1
а	b	с2

The fact that a is always associated with bis recorded in multiple rows: redundancy!

Questions about decomposition * When to decompose * How to come up with a correct decomposition

An answer: BCNF

A relation R is in Boyce-Codd Normal Form if
For every non-trivial FD X → Y in R, X is a super key
That is, all FDs follow from "key → other attributes"

When to decompose
As long as some relation is not in BCNF
How to come up with a correct decomposition
Always decompose on a BCNF violation
Then it is guaranteed to be a correct decomposition!

BCNF decomposition algorithm

- * Find a BCNF violation
 - That is, a non-trivial FD $X \to Y$ in R where X is not a super key of R
- * Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- * Repeat until all relations are in BCNF

BCNF decomposition example StudentGrade (SID, name, email, CID, grade) BCNF violation: SID → name, email Student (SID, name, email) Grade (SID, CID, grade) BCNF BCNF

Another example StudentGrade (SID, name, email, CID, grade) BCNF violation: email \rightarrow SID StudentID (email, SID) BCNF StudentGrade' (email, name, CID, grade) BCNF violation: email \rightarrow name StudentName (email, name) BCNF Grade (email, CID, grade) BCNF

Recap

- Functional dependencies: generalization of keys
- * Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method of removing redundancies due to FD's
- * BCNF: schema in this normal form has no redundancy due to FD's
- Not covered in this lecture: many other types of dependencies (e.g., MVD) and normal forms (e.g., 4NF)
 - GMUW has all the details
 - Relational design theory was a big research area in the 1970's, but there is not much going on now