Physical Data Organization

CPS 216

Advanced Database Systems

Announcements (January 27)

< Reading assignment for next week
= System R paper and Lomet’s B*-tree tricks
® Due next Thursday night

Homework #1 due in 12 days

Outline

% It’s all about disks!
® That’s why we always draw databases as

= And why the single most important metric in database
processing is the number of disk I/O’s performed

% Record layout

% Block layout

Storage hierarchy

Registers

How far away is data?

Location Cycles Location Time
Registers 1 My head 1 min.
On-chip cache 2 This room 2 min.
On-board cache 10 Duke campus 10 min.
Memory 100 Washington D.C. 1.5 hr.
Disk 106 Pluto 2 yr.
Tape 107 Andromeda 2000 yr.

(Source: AlphaSort paper, 1995)
& I/O dominates—design your algorithms to reduce I/O!

A typical disk

Arm movement Spindle rotation Moving parts” are slow

1 1 J

Top view

Higher-density sectors on inner tracks
and/or more sectors

on outer tracks

A block is a
logical unit

of transfer
consisting of
one or more sectors

Disk access time

Sum of:

< Seek time: time for disk heads to move to the
correct cylinder

< Rotational delay: time for the desired block to rotate
under the disk head

% Transfer time: time to read/write data in the block
(= time for disk to rotate over the block)

Random disk access

Seek time + rotational delay + transfer time
% Average seek time
= Time to skip one half of the cylinders?
® Not quite; should be time to skip a third of them (why?)
= “Typical” value: 5 ms
< Average rotational delay
= Time for a half rotation (a function of RPM)
= “Typical” value: 4.2 ms (7200 RPM)

< How do you calculate transfer time (function of
transfer size)?

10

Sequential disk access

Seek time + rotational delay + transfer time
% Seek time
® 0 (assuming data is on the same track)
% Rotational delay
® 0 (assuming data is in the next block on the track)

% Easily an order of magnitude faster than random
disk access!

Performance tricks

< Disk layout strategy

= Keep related things (what are they?) close together: same
sector/block — same track — same cylinder — adjacent cylinder

< Double buffering

® While processing the current block in memory, prefetch the next
block from disk (overlap I/O with processing)

< Disk scheduling algorithm

= Example: “elevator” algorithm
% Track buffer

= Read/write one entire track at a time
% Parallel I/O

= More disk heads working at the same time

Record layout

Record = row in a table

% Variable-format records
= Number and types of fields not known in advance
= Rare in DBMS—table schema dictates the format
= Relevant for semi-structured data such as XML

< Focus on fixed-format records
= With fixed-length fields only, or
= With possible variable-length fields

Fixed-length fields

< All field lengths and offsets are constant
= Can be pre-computed from schema
<& Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT);
0 4 24 28 36
I 142 I Bart (padded with space) I 10 I 2.3

< Watch out for alignment

= May need to pad; reorder columns if that helps
< What about NULL?

= Add a bitmap at the beginning of the record

Variable-length records

< Example: CREATE TABLE Student
(SID INT, name VARCHAR(20), age INT, GPA FLOAT,
comment VARCHAR(100));
< Approach 1: use field delimiters (“\0” okay?)
0 4 8 16

[142] 10 2.3 [sart\ofueird kianno]

< Approach 2: use an offset array

0 4 8 1618 22 32
[142] 10] 2.3 [[Jsart]veird kiar|
22 32

< Put all variable-length fields at the end (why?)
< Update is messy if it changes the length of a field

Record layout in commercial systems

< DB2, SQL Server, Informix, Sybase: all variants of
the offset array approach
= DB2: in the fixed-length part of the record, store (offset,
length) for a variable-length field, where offset points to
the start of the field in the variable-length part of the
record; no need to reorder fields
< Oracle: records are structured as if all fields are
potentially of variable length

= A record is a sequence of (length, data) pairs, with a
special length value denoting NULL

LOB fields

< Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT, picture BLOB(32000));

% Student records get “de-clustered”
® Bad because most queries do not involve picture
% Store LOB’s in a difference place (automatically
done by DBMS and transparent to the user)

= Conceptually, the table is decomposed into
o Student(SID, name, age, GPA, picture_id)
® Picture(picture_id, picture)
@ Like System R Phase 0’s XRM storage manager

Block layout

How do you organize records in a block?
< NSM (N-ary Storage Model)
= Most commercial DBMS
% PAX (Partition Attributes Across)
= Research work (Ailamaki et al., VLDB 2001)

NSM

% Store records from the beginning of each block

< Use a slot directory at the end of each block
= To locate records and manage free space

= Necessary for variable-length records
[zl Bart J10] 2.3 fi23[Mithouse [10]3.1
857 | Lis 8] 4.3

)

Why store d
at two differe

Both can gro

ta and directory
ht ends?

easily

Options

< Reorganize after every update/delete to avoid
fragmentation (gaps between records)

= Need to rewrite half of the block on average

< What if records are fixed-length?
= Reorganize after delete
¢ Only need to move one record
* In slot directory, keep a pointer to the beginning of free space
® Do not reorganize after update

¢ In slot directory, keep a bitmap showing which slots are in use

Cache behavior of NSM

- Query: SELECT SID FROM Student WHERE GPA > 2.0;
% Say cache block size < record size

% Lots of cache misses

= ID and GPA are not close enough by memory standard

[gz]Bart [10] 2.3 [g23[mithouse [10]3.1 142 Bart 10
‘wl Lh\lBl 4.3] \ 2.3 123 MiThouse
6|Ralph 2.3 10 3.1 857 Lisa
8 4.3
456 Ralph 8
2.3
Cache

Do caches misses matter in DBMS?

< No? Compared to disk I/O’s, memory-related stall
time is nothing
< Yes?
® You may mask some I/O cost
® You may avoid some I/O’s by memory buffering
® Percentage of memory-related stall time due to data

cache misses is high
® 90% for OLAP workloads
(lots of large, complex, range-based queries, few updates)
* 50-70% for OLTP workloads
(lots of small, simple, point-based queries and updates)

22

PAX

< Most queries only access a few columns
% Cluster same columns in “minipages” in each block

® When a particular column of a row is brought into the cache, the
same column of the next row is brought in together

Reorganize after every update

- 4 | (number of records) (for variable-length records only)
| 142| 123 I 857 I 456 and delete to keep fields together
10j10f 818
1111 (IS NOT NULL bitmap)
Z.3|3.1|4.3|2.3
1111

PAX versus NSM

% Space requirement: roughly the same

< Cache performance: PAX incurs 75% less data cache misses
than NSM

< Opverall performance
= For OLAP queries (TPC-H), PAX is 11-48% faster

= For updates, PAX is 10-16% faster (assuming NSM also
reorganizes)

= Unanswered question: How about OLTP queries/updates
(typically very selective)?

= Adaptive hybrid of PAX and NSM
= Hankins and Patel. “Data Morphing...” VLDB 2003

= Dynamic adjustment of layout when fetching fro
= Shao et al. “Clotho: Decoupling...” VLDB 2004

“Pointers” to records

% Logical record id: value of the primary key
= Used in references (e.g., Enroll(SID, CID))
% Physical record id: (disk block id, slot number)
® Used in index entries: (key, physical record id)
% Pros and cons
® Physical id is faster
¢ Disk block id directly gives exact location of record on disk; while given the
primary key value, we need to go through the primary index
* Primary key value might be huge (in terms of size in bytes)
= Some tables do not declare primary key
¢ Can invent a surrogate key
= Logical record id is more informative
* May save an access to the actual record

® Physical id must be maintained when record moves around on disk

25

Record pointers in commercial systems

< At user/SQL level, logical record id is the only
option (why?)

% Internally, virtually all commercial systems use
physical record id

® Except Oracle and SQL Server, who use primary key as
record id if one exists

Summary

% Storage hierarchy

= Why I/O’s dominate the cost of database operations
< Disk

= Steps in completing a disk access

= Sequential versus random accesses
% Record layout

® Handling variable-length fields

= Handling NULL

= Handling modifications . .
s BlockllEyons Next: more SQL; then indexing
= NSM versus PAX

< Logical versus physical record ids

