
1

Physical Data Organization

CPS 216

Advanced Database Systems

2

Announcements (January 27)

Reading assignment for next week
System R paper and Lomet’s B+-tree tricks

Due next Thursday night

Homework #1 due in 12 days

3

Outline

It’s all about disks!
That’s why we always draw databases as

And why the single most important metric in database
processing is the number of disk I/O’s performed

Record layout

Block layout

4

Storage hierarchy

Registers

Cache

Memory

Disk

Tapes

5

How far away is data?

Location Cycles

Registers 1

On-chip cache 2

On-board cache 10

Memory 100

Disk 106

Tape 109

Location Time

My head 1 min.

This room 2 min.

Duke campus 10 min.

Washington D.C. 1.5 hr.

Pluto 2 yr.

Andromeda 2000 yr.
(Source: AlphaSort paper, 1995)

I/O dominates—design your algorithms to reduce I/O!

6

A typical disk

Spindle rotation

Platter

Platter

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

“Moving parts” are slow

2

7

Top view

Track

Track
Track

Sectors

Higher-density sectors on inner tracks
and/or more sectors
on outer tracks

A block is a
logical unit
of transfer

consisting of
one or more sectors

8

Disk access time

Sum of:

Seek time: time for disk heads to move to the
correct cylinder

Rotational delay: time for the desired block to rotate
under the disk head

Transfer time: time to read/write data in the block
(= time for disk to rotate over the block)

9

Random disk access

Seek time + rotational delay + transfer time
Average seek time

Time to skip one half of the cylinders?
Not quite; should be time to skip a third of them (why?)

“Typical” value: 5 ms

Average rotational delay
Time for a half rotation (a function of RPM)
“Typical” value: 4.2 ms (7200 RPM)

How do you calculate transfer time (function of
transfer size)?

10

Sequential disk access

Seek time + rotational delay + transfer time

Seek time
0 (assuming data is on the same track)

Rotational delay
0 (assuming data is in the next block on the track)

Easily an order of magnitude faster than random
disk access!

11

Performance tricks
Disk layout strategy

Keep related things (what are they?) close together: same
sector/block → same track → same cylinder → adjacent cylinder

Double buffering
While processing the current block in memory, prefetch the next
block from disk (overlap I/O with processing)

Disk scheduling algorithm
Example: “elevator” algorithm

Track buffer
Read/write one entire track at a time

Parallel I/O
More disk heads working at the same time

12

Record layout

Record = row in a table

Variable-format records
Number and types of fields not known in advance

Rare in DBMS—table schema dictates the format

Relevant for semi-structured data such as XML

Focus on fixed-format records
With fixed-length fields only, or

With possible variable-length fields

3

13

Fixed-length fields

All field lengths and offsets are constant
Can be pre-computed from schema

Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT);

142
0 4

Bart (padded with space)

24

10 2.3
28 36

Watch out for alignment
May need to pad; reorder columns if that helps

What about NULL?
Add a bitmap at the beginning of the record

14

Variable-length records

Example: CREATE TABLE Student
(SID INT, name VARCHAR(20), age INT, GPA FLOAT,
comment VARCHAR(100));

Approach 1: use field delimiters (“\0” okay?)

Approach 2: use an offset array

Put all variable-length fields at the end (why?)

Update is messy if it changes the length of a field

142
0 4

Bart\010 2.3
8 16

Weird kid!\0

142
0 4

Bart10 2.3
8 16

Weird kid!

18 22 32

22 32

15

Record layout in commercial systems

DB2, SQL Server, Informix, Sybase: all variants of
the offset array approach

DB2: in the fixed-length part of the record, store (offset,
length) for a variable-length field, where offset points to
the start of the field in the variable-length part of the
record; no need to reorder fields

Oracle: records are structured as if all fields are
potentially of variable length

A record is a sequence of (length, data) pairs, with a
special length value denoting NULL

16

LOB fields

Example: CREATE TABLE Student(SID INT, name
CHAR(20), age INT, GPA FLOAT, picture BLOB(32000));

Student records get “de-clustered”
Bad because most queries do not involve picture

Store LOB’s in a difference place (automatically
done by DBMS and transparent to the user)

Conceptually, the table is decomposed into
• Student(SID, name, age, GPA, picture_id)

• Picture(picture_id, picture)

Like System R Phase 0’s XRM storage manager

17

Block layout

How do you organize records in a block?

NSM (N-ary Storage Model)
Most commercial DBMS

PAX (Partition Attributes Across)
Research work (Ailamaki et al., VLDB 2001)

18

NSM

Store records from the beginning of each block

Use a slot directory at the end of each block
To locate records and manage free space

Necessary for variable-length records

142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3

857 Lisa 8 4.3

Why store data and directory
at two different ends?

Both can grow easily

4

19

Options

Reorganize after every update/delete to avoid
fragmentation (gaps between records)

Need to rewrite half of the block on average

What if records are fixed-length?
Reorganize after delete

• Only need to move one record

• In slot directory, keep a pointer to the beginning of free space

Do not reorganize after update
• In slot directory, keep a bitmap showing which slots are in use

20

Cache behavior of NSM

Query: SELECT SID FROM Student WHERE GPA > 2.0;

Say cache block size < record size

Lots of cache misses
ID and GPA are not close enough by memory standard

142 Bart 10 2.3 123 Milhouse 10 3.1

456 Ralph 8 2.3

857 Lisa 8 4.3
142 Bart 10

2.3 123 Milhouse

10 3.1 857 Lisa

8 4.3

456 Ralph 8

Cache

2.3

21

Do caches misses matter in DBMS?

No? Compared to disk I/O’s, memory-related stall
time is nothing

Yes?
You may mask some I/O cost

You may avoid some I/O’s by memory buffering

Percentage of memory-related stall time due to data
cache misses is high

• 90% for OLAP workloads
(lots of large, complex, range-based queries, few updates)

• 50-70% for OLTP workloads
(lots of small, simple, point-based queries and updates)

22

PAX

Most queries only access a few columns

Cluster same columns in “minipages” in each block
When a particular column of a row is brought into the cache, the
same column of the next row is brought in together

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

(IS NOT NULL bitmap)

23

PAX versus NSM
Space requirement: roughly the same
Cache performance: PAX incurs 75% less data cache misses
than NSM
Overall performance

For OLAP queries (TPC-H), PAX is 11-48% faster
For updates, PAX is 10-16% faster (assuming NSM also
reorganizes)
Unanswered question: How about OLTP queries/updates
(typically very selective)?

Adaptive hybrid of PAX and NSM
Hankins and Patel. “Data Morphing…” VLDB 2003

Dynamic adjustment of layout when fetching fro
Shao et al. “Clotho: Decoupling…” VLDB 2004

24

“Pointers” to records
Logical record id: value of the primary key

Used in references (e.g., Enroll(SID, CID))

Physical record id: (disk block id, slot number)
Used in index entries: (key, physical record id)

Pros and cons
Physical id is faster

• Disk block id directly gives exact location of record on disk; while given the
primary key value, we need to go through the primary index

• Primary key value might be huge (in terms of size in bytes)

Some tables do not declare primary key
• Can invent a surrogate key

Logical record id is more informative
• May save an access to the actual record

Physical id must be maintained when record moves around on disk

5

25

Record pointers in commercial systems

At user/SQL level, logical record id is the only
option (why?)

Internally, virtually all commercial systems use
physical record id

Except Oracle and SQL Server, who use primary key as
record id if one exists

26

Summary
Storage hierarchy

Why I/O’s dominate the cost of database operations

Disk
Steps in completing a disk access
Sequential versus random accesses

Record layout
Handling variable-length fields
Handling NULL
Handling modifications

Block layout
NSM versus PAX

Logical versus physical record ids

Next: more SQL; then indexing

