
1

SQL: Part II

CPS 216

Advanced Database Systems

2

Announcements (February 1)

Reading assignment for this week
System R paper and Lomet’s B+-tree tricks

Due Thursday night

Homework #1 due in 7 days

No class next Thursday (February 10)
Instructor out of town for a program committee meeting

3

Summary of SQL features covered so far

Basic modeling features
Bags, NULL’s

Schema features
CREATE/DROP TABLE

Query features
SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping

Next: subqueries

4

Scalar subqueries
A query that returns a single row can be used as a value in
WHERE, SELECT, etc.
Example: students at the same age as Bart

SELECT *
FROM Student
WHERE age = (

);

SELECT age
FROM Student
WHERE name = ’Bart’

What’s Bart’s age?

Runtime error if subquery returns more than one row

Under what condition will this runtime error never occur?
name is a key of Student

What if subquery returns no rows?
Return NULL

5

IN subqueries

x IN (subquery) checks if x is in the result of
subquery

Example: students at the same age as (some) Bart
SELECT *
FROM Student
WHERE age IN (

);

SELECT age
FROM Student
WHERE name = ’Bart’

What’s Bart’s age?

6

EXISTS subqueries

EXISTS (subquery) checks if the result of subquery is
non-empty

Example: students at the same age as (some) Bart
SELECT *
FROM Student AS s
WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’
AND age = s.age);

It is a correlated subquery—a subquery that references
tuple variables in surrounding queries

2

7

Operational semantics of subqueries
SELECT *
FROM Student AS s
WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’
AND age = s.age);

For each row s in Student
Evaluate the subquery with the appropriate value of s.age
If the result of the subquery is not empty, output s.*

The DBMS query optimizer may choose to process the
query in an equivalent, but more efficient way (example?)

8

Scoping rule of subqueries

To find out which table a column belongs to
Start with the immediately surrounding query

If not found, look in the one surrounding that; repeat if
necessary

Use table_name.column_name notation and AS
(renaming) to avoid confusion

9

Another example

SELECT * FROM Student s
WHERE EXISTS

(SELECT * FROM Enroll e
WHERE SID = s.SID
AND EXISTS

(SELECT * FROM Enroll
WHERE SID = s.SID
AND CID <> e.CID));

Students who are taking at least two courses

10

Quantified subqueries

A quantified subquery can be used as a value in a WHERE
condition

Universal quantification (for all):
… WHERE x op ALL (subquery) …

True iff for all t in the result of subquery, x op t

Existential quantification (exists):
… WHERE x op ANY (subquery) …

True iff there exists some t in the result of subquery such that x op t

Beware
• In common parlance, “any” and “all” seem to be synonyms
• In SQL, ANY really means “some”

11

Examples of quantified subqueries

Which students have the highest GPA?
SELECT *
FROM Student
WHERE GPA >= ALL

(SELECT GPA FROM Student);
SELECT *
FROM Student
WHERE NOT

(GPA < ANY (SELECT GPA FROM Student));
Use NOT to negate a condition

12

More ways of getting the highest GPA

Which students have the highest GPA?
SELECT *
FROM Student AS s
WHERE NOT EXISTS

(SELECT * FROM Student
WHERE GPA > s.GPA);

SELECT * FROM Student
WHERE SID NOT IN

(SELECT s1.SID
FROM Student AS s1, Student AS s2
WHERE s1.GPA < s2.GPA);

3

13

Summary of SQL features covered so far

Basic modeling features
Bags, NULL’s

Schema features
CREATE/DROP TABLE

Query features
SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping
Subqueries: not much more expressive power added

Next: modifications

14

INSERT

Insert one row

INSERT INTO Enroll VALUES (456, ’CPS216’);

• Student 456 takes CPS216

Insert the result of a query

INSERT INTO Enroll
(SELECT SID, ’CPS216’ FROM Student
WHERE SID NOT IN (SELECT SID FROM Enroll

WHERE CID = ’CPS216’));

• Force everybody to take CPS216

15

DELETE
Delete everything

DELETE FROM Enroll;

Delete according to a WHERE condition

Example: Student 456 drops CPS216
DELETE FROM Enroll
WHERE SID = 456 AND CID = ’CPS216’;

Example: Drop students with GPA lower than 1.0 from all
CPS classes

DELETE FROM Enroll
WHERE SID IN (SELECT SID FROM Student

WHERE GPA < 1.0)
AND CID LIKE ’CPS%’;

16

UPDATE

Example: Student 142 changes name to “Barney”
and GPA to 3.0

UPDATE Student
SET name = ’Barney’, GPA = 3.0
WHERE SID = 142;

Example: Let’s be “fair”?
UPDATE Student
SET GPA = (SELECT AVG(GPA) FROM Student);
• But update of every row causes average GPA to change!

• Average GPA is computed over the old Student table

17

Summary of SQL features covered so far

Basic modeling features
Bags, NULL’s

Schema features
CREATE/DROP TABLE

Next: constraints

Query features
SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping, subqueries

Modifications

18

Constraints

Restrictions on allowable data in a database
In addition to the simple structure and type restrictions
imposed by the table definitions

Declared as part of the schema

Enforced automatically by the DBMS

Why use constraints?
Protect data integrity (catch errors)

Tell the DBMS about the data (so it can optimize better)

4

19

Types of SQL constraints

NOT NULL

Key

Referential integrity (foreign key)

General assertion

Tuple- and attribute-based CHECK’s

20

NOT NULL constraint examples
CREATE TABLE Student
(SID INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
email VARCHAR(30),
age INTEGER,
GPA FLOAT);

CREATE TABLE Course
(CID CHAR(10) NOT NULL,
title VARCHAR(100) NOT NULL);

CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL);

21

Key declaration

At most one PRIMARY KEY per table
Typically implies a primary index

Rows are stored inside the index, typically sorted by the
primary key value

Any number of UNIQUE keys per table
Typically implies a secondary index

Pointers to rows are stored inside the index

22

Key declaration examples
CREATE TABLE Student
(SID INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
email VARCHAR(30) UNIQUE,
age INTEGER,
GPA FLOAT);

CREATE TABLE Course
(CID CHAR(10) NOT NULL PRIMARY KEY,
title VARCHAR(100) NOT NULL);

CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID));

Works on Oracle
but not DB2:
DB2 requires UNIQUE
key columns
to be NOT NULL

This form is required for multi-attribute keys

23

Referential integrity example

Enroll.SID references Student.SID
If an SID appears in Enroll, it must appear in Student

Enroll.CID references Course.CID
If a CID appears in Enroll, it must appear in Course

That is, no “dangling pointers”

Student CourseEnroll

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
...

CID title
CPS216 Advanced Database Systems
CPS230 Analysis of Algorithms
CPS214 Computer Networks
... ...

SID CID
142 CPS216
142 CPS214
123 CPS216
857 CPS216
857 CPS230
456 CPS214
... ...

24

Referential integrity in SQL

Referenced column(s) must be PRIMARY KEY
Referencing column(s) form a FOREIGN KEY

Example
CREATE TABLE Enroll
(SID INTEGER NOT NULL

REFERENCES Student(SID),
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID),
FOREIGN KEY CID REFERENCES Course(CID));

5

25

Enforcing referential integrity
Example: Enroll.SID references Student.SID

Insert/update an Enroll row so it refers to a non-existent SID
Reject

Delete/update a Student row whose SID is referenced by
some Enroll row

Reject
Cascade: ripple changes to all referring rows
Set NULL: set all references to NULL

Deferred constraint checking (e.g., only at the end of a
transaction)

Good for performance (e.g., during bulk loading)
Required when creating cycles of references

26

General assertion

CREATE ASSERTION assertion_name
CHECK assertion_condition;
assertion_condition is checked for each modification
that could potentially violate it

Example: Enroll.SID references Student.SID
CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (NOT EXISTS

(SELECT * FROM Enroll
WHERE SID NOT IN
(SELECT SID FROM Student)));

In SQL3, but not all (perhaps no) DBMS support it

27

Tuple- and attribute-based CHECK’s

Associated with a single table

Only checked when a tuple or an attribute is
inserted or updated

Example:
CREATE TABLE Enroll
(SID INTEGER NOT NULL

CHECK (SID IN (SELECT SID FROM Student)),
CID ...);

Is it a referential integrity constraint?

Not quite; not checked when Student is modified

28

Summary of SQL features covered so far

Basic modeling features
Bags, NULL’s

Schema features
CREATE/DROP TABLE, constraints

Next: views

Query features
SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping, subqueries

Modifications

29

Views

A view is like a “virtual” table
Defined by a query, which describes how to compute the
view contents on the fly

DBMS stores the view definition query instead of view
contents

Can be used in queries just like a regular table

30

Creating and dropping views

Example: CPS216 roster
CREATE VIEW CPS216Roster AS
SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID FROM Enroll

WHERE CID = ’CPS216’);

To drop a view
DROP VIEW view_name;

Called “base tables”

6

31

Using views in queries

Example: find the average GPA of CPS216 students
SELECT AVG(GPA) FROM CPS216Roster;
To process the query, replace the reference to the view by
its definition

SELECT AVG(GPA)
FROM (SELECT SID, name, age, GPA

FROM Student
WHERE SID IN (SELECT SID

FROM Enroll
WHERE CID = ’CPS216’));

32

Why use views?

To hide data from users

To hide complexity from users

Logical data independence
If applications deal with views, we can change the
underlying schema without affecting applications

Recall physical data independence: change the physical
organization of data without affecting applications

Real database applications use tons of views

33

Summary of SQL features covered so far

Basic modeling features
Bags, NULL’s

Schema features
CREATE/DROP TABLE, constraints, views

Query features
SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping, subqueries

Modifications

Next: indexes

34

Indexes

An index is an auxiliary persistent data structure
Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.

More on indexes in following weeks!

An index on R.A can speed up accesses of the form
R.A = value

R.A > value (depending on the index type)

An index on (R.A1, …, R.An) can speed up
R.A1 = value1 ∧ … ∧ R.An = valuen
Multidimensional range searches (depending on the index type)

Is an index on (R.A, R.B) equivalent to one on (R.B, R.A)?
Or an index on R.A plus another index on R.B?

35

Examples of using indexes

SELECT * FROM Student WHERE name = ’Bart’
Without an index on Student.name: must scan the entire table if we
store Student as a flat file of unordered rows

With index: go “directly” to rows with name = ’Bart’

SELECT * FROM Student, Enroll
WHERE Student.SID = Enroll.SID;

Without any index: for each Student row, scan the entire Enroll
table for matching SID

• Sorting could help

With an index on Enroll.SID: for each Student row, directly look up
Enroll rows with matching SID

36

Creating and dropping indexes in SQL

CREATE INDEX index_name ON
table_name(column_name1, …, column_namen);
DROP INDEX index_name;

Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint
declarations

7

37

Choosing indexes to create

More indexes = better performance?

Indexes take space

Indexes need to be maintained when data is updated

Indexes have one more level of indirection
Perhaps not a problem for main memory, but can be
really bad on disk

Optimal index selection depends on both query and
update workload and the size of tables

Automatic index selection is still an area of active
research

38

Summary of SQL features covered so far

Basic modeling features
Bags, NULL’s

Schema features
CREATE/DROP TABLE, constraints, views

Query features
SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping, subqueries

Modifications
Performance tuning features

Indexes

39

What else?

Output ordering (ORDER BY)

Triggers

SQL transactions and isolation levels

Application programming interface

Recursion

