SQL: Part II

CPS 216

Advanced Database Systems

Announcements (February 1)

< Reading assignment for this week
= System R paper and Lomet’s BT -tree tricks
® Due Thursday night

< Homework #1 due in 7 days

< No class next Thursday (February 10)

= Instructor out of town for a program committee meeting

Summary of SQL features covered so far

% Basic modeling features
= Bags, NULL’s

% Schema features
= CREATE/DROP TABLE

< Query features

= SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping

& Next: subqueries

Scalar subqueries

% A query that returns a single row can be used as a value in
WHERE, SELECT, etc.
< Example: students at the same age as Bart
SELECT * What'’s Bart’s age?
FROM Student
WHERE age = (SELECT age
FROM Student
WHERE name = 'Bart');
< Runtime error if subquery returns more than one row
% Under what condition will this runtime error never occur?
= name is a key of Student
% What if subquery returns no rows?
= Return NULL

IN subqueries

@ x IN (subquery) checks if x is in the result of
subquery

< Example: students at the same age as (some) Bart

SELECT * What's Bart’s age?
FROM Student
WHERE age IN (SELECT age

FROM Student

WHERE name = 'Bart');

EXISTS subqueries

« EXISTS (subquery) checks if the result of subquery is
non-empty

< Example: students at the same age as (some) Bart
= SELECT *
FROM Student AS s
WHERE EXISTS (SELECT * FROM Student
WHERE name = 'Bart'

AND age = s.age);

® It is a correlated subquery—a subquery that references

tuple variables in surrounding queries

Operational semantics of subqueries

< SELECT *
FROM Student AS s
WHERE EXISTS (SELECT * FROM Student
WHERE name = 'Bart'
AND age = s.age);

% For each row s in Student
= Evaluate the subquery with the appropriate value of S.age
= If the result of the subquery is not empty, output S.*
< The DBMS query optimizer may choose to process the
query in an equivalent, but more efficient way (example?)

Scoping rule of subqueries

< To find out which table a column belongs to
= Start with the immediately surrounding query
= If not found, look in the one surrounding that; repeat if
necessary
< Use table_name .column_name notation and AS

(renaming) to avoid confusion

Another example

SELECT * FROM Student s
WHERE EXISTS
(SELECT * |FROM Enro
WHERE = 5.SID
AND EXISTS -
(SELECT *|FROM| Enro11
WHERE .SID

AND CID <> e.CID));

—_

e

Students who are taking at least two courses

10

Quantified subqueries

% A quantified subquery can be used as a value in a WHERE
condition
< Universal quantification (for all):
... WHERE x op ALL (subgquery) ...
® True iff for all 7 in the result of subquery, x op ¢
< Existential quantification (exists):
... WHERE x op ANY (szbguery) ...
® True iff there exists some 7 in the result of s#bguery such that x gp ¢

F Beware

* In common parlance, “any” and “all” seem to be synonyms
* In SQL, ANY really means “some”

Examples of quantified subqueries

< Which students have the highest GPA?
= SELECT *
FROM Student
WHERE GPA >= ALL
(SELECT GPA FROM Student);
= SELECT *
FROM Student
WHERE NOT
(GPA < ANY (SELECT GPA FROM Student));

& Use NOT to negate a condition

More ways of getting the highest GPA

< Which students have the highest GPA?

= SELECT *
FROM Student AS s
WHERE NOT EXISTS
(SELECT * FROM Student
WHERE GPA > s.GPA);

= SELECT * FROM Student
WHERE SID NOT IN
(SELECT s1.SID
FROM Student AS sl, Student AS s2
WHERE s1.GPA < s2.GPA);

Summary of SQL features covered so far

< Basic modeling features
= Bags, NULL’s

% Schema features
= CREATE/DROP TABLE

% Query features
y

= SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping

= Subqueries: not much more expressive power added

@ Next: modifications

INSERT

< Insert one row

= INSERT INTO Enroll VALUES (456, 'CPS216');
¢ Student 456 takes CPS216

< Insert the result of a query
= INSERT INTO Enroll
(SELECT SID, 'CPS216' FROM Student
WHERE SID NOT IN (SELECT SID FROM Enroll
WHERE CID = 'CPS216'));
* Force everybody to take CPS216

DELETE

% Delete everything
= DELETE FROM Enroll;

% Delete according to a WHERE condition

Example: Student 456 drops CPS216
= DELETE FROM Enroll
WHERE SID = 456 AND CID = 'CPS216';

Example: Drop students with GPA lower than 1.0 from all
CPS classes

= DELETE FROM Enroll
WHERE SID IN (SELECT SID FROM Student
WHERE GPA < 1.0)
AND CID LIKE 'CPS%';

UPDATE

< Example: Student 142 changes name to “Barney”
and GPA t0 3.0
= UPDATE Student
SET name = 'Barney', GPA = 3.0
WHERE SID = 142;

< Example: Let’s be “fair”?
= UPDATE Student
SET GPA = (SELECT AVG(GPA) FROM Student);

* But update of every row causes average GPA to change!

¢ Average GPA is computed over the old Student table

Summary of SQL features covered so far

< Basic modeling features
= Bags, NULL’s

< Schema features
= CREATE/DROP TABLE
@ Next: constraints

< Query features

= SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping, subqueries

% Modifications

Constraints

% Restrictions on allowable data in a database

= In addition to the simple structure and type restrictions
imposed by the table definitions

= Declared as part of the schema

= Enforced automatically by the DBMS
< Why use constraints?

= Protect data integrity (catch errors)

= Tell the DBMS about the data (so it can optimize better)

Types of SQL constraints

< NOT NULL

< Key

< Referential integrity (foreign key)
< General assertion

% Tuple- and attribute-based CHECK’s

20

NOT NULL constraint examples

< CREATE TABLE Student
(SID INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
email VARCHAR(30),
age INTEGER,
GPA FLOAT);
< CREATE TABLE Course
(CID CHAR(10) NOT NULL,
title VARCHAR(100) NOT NULL);
< CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL);

Key declaration

< At most one PRIMARY KEY per table
= Typically implies a primary index
= Rows are stored inside the index, typically sorted by the
primary key value
< Any number of UNIQUE keys per table
= Typically implies a secondary index

= Pointers to rows are stored inside the index

22

Key declaration examples

< CREATE TABLE Student
(SID INTEGER NOT NULL PRIMARY KEY,

name VARCHAR(30) NOT NULL, Works on Oracle
email VARCHAR(30) UNIQUE,«— but not DB2:

age INTEGER, DB2 ires UNIQUE
GPA FLOAT); IS .

. key columns
< CREATE TABLE Course 0 be NOT NULL

(CID CHAR(10) NOT NULL PRIMARY KEY,
title VARCHAR(100) NOT NULL);
+ CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID));

This form is required for multi-attribute keys

Referential integrity example

% Enroll SID references Student.SID

= If an SID appears in Enroll, it must appear in Student

< Enroll.CID references Course.CID

= If a CID appears in Enroll, it must appear in Course

@ That is, no “dangling pointers”

Student Envoll Course
SID |name age |GPA SID |CID CcID title
142 o123 142 |CPS216 CPS216 [Advanced Database Systems
123 Milhouse|10 [3.1 | —|l42 |CPS214 CPS230 |Analysis of Algorithms
857 =k (7.3 T—[123 [CPS216 CPS214 [Computer Networks
456 $Raloh _[5—~—[2.3 7857 |CPS216 /
o 857 |CPS230
456 |CPS214

Referential integrity in SQL

% Referenced column(s) must be PRIMARY KEY
< Referencing column(s) form a FOREIGN KEY

< Example
= CREATE TABLE Enroll
(SID INTEGER NOT NULL
REFERENCES Student(SID),
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID),
FOREIGN KEY CID REFERENCES Course(CID));

Enforcing referential integrity

Example: Enroll.SID references Student.SID
< Insert/update an Enroll row so it refers to a non-existent SID
= Reject
< Delete/update a Student row whose SID is referenced by
some Enroll row
= Reject
= Cascade: ripple changes to all referring rows
= Set NULL: set all references to NULL
% Deferred constraint checking (e.g., only at the end of a
transaction)
® Good for performance (e.g., during bulk loading)
= Required when creating cycles of references

General assertion

« CREATE ASSERTION assertion_name

CHECK assertion_condition

< assertion_condition is checked for each modification
that could potentially violate it

< Example: Enroll SID references Student.SID

= CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (NOT EXISTS
(SELECT * FROM Enroll
WHERE SID NOT IN
(SELECT SID FROM Student)));

= In SQL3, but not all (perhaps no) DBMS support it

Tuple- and attribute-based CHECK’s

% Associated with a single table

% Only checked when a tuple or an attribute is
inserted or updated
< Example:
= CREATE TABLE Enroll
(SID INTEGER NOT NULL

CHECK (SID IN (SELECT SID FROM Student)),
CID ...);

= Js it a referential integrity constraint?

® Not quite; not checked when Student is modified

Summary of SQL features covered so far

% Basic modeling features
= Bags, NULL’s
% Schema features
= CREATE/DROP TABLE, constraints
@ Next: views
% Query features
= SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping, subqueries

% Modifications

Views

% A view is like a “virtual” table

= Defined by a query, which describes how to compute the
view contents on the fly

= DBMS stores the view definition query instead of view
contents

® Can be used in queries just like a regular table

Creating and dropping views

< Example: CPS216 roster

= CREATE VIEW CPS216Roster AS
SELECT SID, name, age, GPA _Called “base tables”

FROM Student——

WHERE SID IN (SELECT SID FROM Enroll
WHERE CID = 'CPS216');

< To drop a view
= DROP VIEW view name;

Using views in queries

< Example: find the average GPA of CPS216 students
= SELECT AVG(GPA) FROM CPS216Roster;

= To process the query, replace the reference to the view by
its definition

= SELECT AVG(GPA)
FROM (SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID
FROM Enroll
WHERE CID = 'CPS216'));

Why use views?

< To hide data from users
% To hide complexity from users
% Logical data independence

= If applications deal with views, we can change the
underlying schema without affecting applications

= Recall physical data independence: change the physical
organization of data without affecting applications

@ Real database applications use tons of views

Summary of SQL features covered so far

< Basic modeling features
= Bags, NULL’s
% Schema features
= CREATE/DROP TABLE, constraints, views

% Query features
y

= SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping, subqueries

% Modifications

@ Next: indexes

Indexes

< An index is an auxiliary persistent data structure
= Search tree (e.g., B*-tree), lookup table (e.g., hash table), etc.
@ More on indexes in following weeks!
% An index on R.A can speed up accesses of the form
® RA = value
® R.A > value (depending on the index type)
< Anindex on (RA,, ..., R.A,) can speed up
® RA, =wvalue, \ ... \R.A, = value,
® Multidimensional range searches (depending on the index type)
@ Is an index on (R.4, R.B) equivalent to one on (R.B, R.A)?
Or an index on R.A plus another index on R.B?

Examples of using indexes

< SELECT * FROM Student WHERE name = 'Bart'
= Without an index on Student.name: must scan the entire table if we
store Student as a flat file of unordered rows
= With index: go “directly” to rows with name = 'Bart'
< SELECT * FROM Student, Enroll
WHERE Student.SID = Enrol1.SID;
= Without any index: for each Student row, scan the entire Enroll
table for matching SID
* Sorting could help

= With an index on Enro/l.SID: for each Student row, directly look up
Enroll rows with matching SID

6

Creating and dropping indexes in SQL ;

< CREATE INDEX 7ndex name ON

table_name(column_name,, ..., column_name,) ;
< DROP INDEX index name;

% Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint

declarations

Choosing indexes to create

More indexes = better performance?
< Indexes take space
< Indexes need to be maintained when data is updated

< Indexes have one more level of indirection
= Perhaps not a problem for main memory, but can be
really bad on disk
= Optimal index selection depends on both query and
update workload and the size of tables

= Automatic index selection is still an area of active
research

Summary of SQL features covered so far

% Basic modeling features

= Bags, NULL’s
< Schema features

= CREATE/DROP TABLE, constraints, views
% Query features

= SELECT-FROM-WHERE statements, set and bag operations,
table expressions, aggregation and grouping, subqueries

< Modifications
% Performance tuning features

= Indexes

What else?

% Output ordering (ORDER BY)

% Triggers

< SQL transactions and isolation levels
% Application programming interface

% Recursion

