
1

Indexing: Part I

CPS 216

Advanced Database Systems

2

Announcements (February 3)

Homework #1 due next Tuesday (February 8)

No class next Thursday (February 10)

Homework #2 will be assigned on the following
Tuesday; meanwhile, use the time to think about
course project!

3

Basics

Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

Other search criteria, e.g.
Range search

SELECT * FROM R WHERE A > value;
Keyword search

database indexing Search

2

4

Dense and sparse indexes

Dense: one index entry for each search key value
Sparse: one index entry for each block

Records must be clustered according to the search key
123 Milhouse 10 3.1
142 Bart 10 2.3
279 Jessica 10 4
345 Martin 8 2.3

456 Ralph 8 2.3
512 Nelson 10 2.1
679 Sherri 10 3.3
697 Terri 10 3.3

857 Lisa 8 4.3
912 Windel 8 3.1

123
456
875

Sparse index
on SID

Bart
Jessica
Lisa
Martin
Milhouse
Nelson
Ralph
Sherri
Terri
Windel

Dense index
on name

5

Dense versus sparse indexes

Index size

Requirement on records

Lookup

Update

6

Primary and secondary indexes

Primary index
Created for the primary key of a table

Records are usually clustered according to the primary key

Can be sparse

Secondary index
Usually dense

SQL
PRIMARY KEY declaration automatically creates a primary index,
UNIQUE key automatically creates a secondary index

Secondary index can be created on non-key attribute(s)
CREATE INDEX StudentGPAIndex ON Student(GPA);

3

7

ISAM

What if an index is still too big?
Put a another (sparse) index on top of that!

ISAM (Index Sequential Access Method), more or less

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197

8

Updates with ISAM

Overflow chains and empty data blocks degrade
performance

Worst case: most records go into one long chain

Example: insert 107

107

Overflow block

Example: delete 129
100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…

… … …

Data blocks

192, 197,
…

200, 202,
…

9

B+-tree

Disk-based: one node per block; large fan-out

Balanced (more or less): good performance
guarantee

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4
(dictated by block size)

4

10

Sample B+-tree nodes

Max fan-out: 4

12
0

15
0

18
0

to keys
k < 120

to keys
120 · k < 150

to keys
150 · k < 180

to keys
180 · k

Non-leaf

12
0

13
0

to records with these k values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

11

B+-tree balancing properties

All leaves at the same lowest level

All nodes at least half full (except root)

Max # Max # Min # Min #
pointers keys active pointers keys

Non-leaf f f – 1 d f / 2 e d f / 2 e – 1

Root f f – 1 2 1

Leaf f f – 1 b f / 2 c b f / 2 c

12

Lookups

SELECT * FROM R WHERE k = 179;

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

Not found

SELECT * FROM R WHERE k = 32;

5

13

Range query

SELECT * FROM R WHERE k > 32 AND k < 179;

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4
10

0
10

1
11

0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers

35

14

Insertion

Insert a record with search key value 32

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up where the
inserted key
should go…

32

And insert it right there

15

Another insertion example

Insert a record with search key value 152

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

Oops, node is already full!

6

16

Node splitting

12
0

13
0

15
0

15
2

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Yikes, this node is
also already full!

10
0

10
1

11
0

15
6

17

More node splitting

In the worst case, node splitting can “propagate” all the way up to the
root of the tree (not illustrated here)

Splitting the root causes the tree to grow “up” by one level

12
0

13
0

15
0

15
2

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

10
0

10
1

11
0

12
0

15
0

15
6

18

Deletion

Delete a record with search key value 130

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!

7

19

Stealing from a sibling

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
6

Remember to fix the key
in the lowest common ancestor

20

Another deletion example

Delete a record with search key value 179

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!

21

Coalescing

10
0

10
1

11
0

12
0

15
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Remember to delete the
appropriate key from parent

Deletion can “propagate” all the way up to the root of the tree (not
illustrated here)

When the root becomes empty, the tree “shrinks” by one level

15
6

18
0

20
0

8

22

Performance analysis

How many I/O’s are required for each operation?
h (more or less), where h is the height of the tree

Plus one or two to manipulate actual records

Plus O(h) for reorganization (should be very rare if f is large)

Minus one if we cache the root in memory

How big is h?
Roughly logfan-out N, where N is the number of records

B+-tree properties guarantee that fan-out is least f / 2 for all non-
root nodes

Fan-out is typically large (in hundreds)—many keys and pointers
can fit into one block

A 4-level B+-tree is enough for typical tables

23

B+-tree in practice

Complex reorganization for deletion often is not
implemented (e.g., Oracle, Informix)

Most commercial DBMS use B+-tree instead of
hashing-based indexes because B+-tree handles
range queries

24

The Halloween Problem

Story from the early days of System R…

UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;

There is a B+-tree index on Payroll(salary)

The update never stopped (why?)

Solutions?

9

25

Building a B+-tree from scratch

Naïve approach
Start with an empty B+-tree

Process each record as a B+-tree insertion

Problem

26

Bulk-loading a B+-tree

Sort all records (or record pointers) by search key
Just a few passes (assuming a big enough memory)

More sequential I/O’s

Now we already have all leaf nodes!

Insert each leaf node in order
No need to look for the proper place to insert

Only the rightmost path is affected; keep it in memory

…Sorted leaves

Rightmost path

27

Other B+-tree tricks

Compressing keys
Head compression: factor out common key prefix and
store it only once within an index node
Tail compression: choose the shortest possible key value
during a split
In general, any order-preserving key compression
Why does key compression help?

Improving binary search within an index node
Cache-aware organization
Micro-indexing

Using B+-tree to solve the phantom problem

10

28

B+-tree versus ISAM

ISAM is more static; B+-tree is more dynamic

ISAM is more compact (at least initially)
Fewer levels and I/O’s than B+-tree

Overtime, ISAM may not be balanced
Cannot provide guaranteed performance as B+-tree does

29

B+-tree versus B-tree

B-tree: why not store records (or record pointers) in
non-leaf nodes?

These records can be accessed with fewer I/O’s

Problems?

30

Coming up next

Other tree-based indexs: R-trees and variants, GiST

Hashing-based indexes: extensible hashing, linear
hashing, etc.

Text indexes: inverted-list index, suffix arrays

