Indexing: Part IV

CPS 216

Advanced Database Systems

Announcements (February 17)

< Homework #2 due in two weeks

< Reading assignments for this and next week

= “The” query processing survey by Graefe

® Due next Wednesday

% Midterm and course project proposal in three weeks

Keyword search

I [Association for

Google...
The Internet Movie Limages | Gf CPS 216 Advanced pputing Machinery
Database (IMDb). .. ry Database Systems ded in 1947,
carch | I'tf (Fall 2001) Lis the worlds
... Search the Internet ucky Course Information cfiucnrionul &?nd
Movie Database. For d Search | | Course Description / tific computing
more search options, kes | Lang] Time and Place / ty. Today, our
please visit Search Books bers—...
central... FT Resources: Staff... T
|
[database AND search] [Search ||

What are the documents containing both “database” and “search”

o

Keywords x documents

All documents

~N v)
& &S &
S &S &
All keywords % < <° <
“a” | 1 1 1 1
“cat” 1 1 0 0
“database” 0 0 1 0
“dog” 0 | 1 [0 1
“search” 0 0 1 0

1 means keyword appears in the document
0 means otherwise

< Inverted lists: store the matrix by rows
+ Signature files: store the matrix by columns

With compression, of course!

Inverted lists

+ Store the matrix by rows
+ For each keyword, store an inverted list
® (keyword, doc-id-list)
= (“database”, {3, 7, 142, 857, ...})
= (“search”, {3,9, 192,512, ...})
= It helps to sort doc-id-list (why?)
% Vocabulary index on keywords

= BT-tree or hash-based

< How large is an inverted list index?

Using inverted lists

< Documents containing “database”

= Use the vocabulary index to find the inverted list for
“database”

= Return documents in the inverted list

< Documents containing “database” AND “search”

<+ OR? NOT?

What are “all” the keywords?

< All sequences of letters (up to a given length)?
= .. that actually appear in documents!
< All words in English?
+ Plus all phrases?
= Alternative: approximate phrase search by proximity
< Minus all stop words
® They appear in nearly every document; not useful in search
= Example: a, of, the, it
< Combine words with common stems
® They can be treated as the same for the purpose of search

= Example: database, databases

Frequency and proximity

% Frequency
» (keyword, { {doc-id, number-of-occurrences),
(doc-id, number-of-occurrences),
1)
+ Proximity (and frequency)
 (keyword, { (doc-id, {position-of-occurrence,,
position-of-occurrence,, ...),
(doc-id, (position-of-occurrnece,, ...)),

.
= When doing AND, check for positions that are near

Signature files

+ Store the matrix by columns and compress them
< For each document, store a w-bit signature

< Each word is hashed into a w-bit value, with only s
< w bits turned on

+ Signature is computed by taking the bit-wise OR of

the hash values of all words on the document

Does docy contain

hash(“database”) = 0110 doc, contains “database”: 0110 “database”?
hash(“dog”) = 1100 doc, contains “dog”: 1100
hash(“cat”) = 0010 doc, contains “cat” and “dog”: 1110

@ Some false positives; no false negatives

10

Bit-sliced signature files

% Motivation

= To check if a document contains a e

signature
word, we only need to check the 1 ololo
bits that are set in the word’s hash 2 oloo
value 3 ofoft
= So why bother retrieving all w bits 4 ijo
of the signature? : +
” 0lolo

< Instead of storing » signature

T T
)) Slice 7 ... Slice 0
files, store w bit slices

Only check the slices that Bigslicedbignacure files

correspond to the set bits in the Starting to look like
word’s hash value an inverted list again!

+ Start from the sparse slices

Inverted lists versus signatures

< Inverted lists better for most purposes (70DS, 1998)
< Problems of signature files

False positives

Hard to use because s, w, and the hash function need tuning to
work well

Long documents will likely have mostly 1’s in signatures

Common words will create mostly 1’s for their slices

Difficult to extend with features such as frequency, proximity
< Saving grace of signature files

= Sizes are tunable

= Good for lots of search terms

= Good for computing similarity of documents

Ranking result pages

% A single search may return many pages
= A user will not look at all result pages
= Complete result may be unnecessary
@ Result pages need to be ranked

% Possible ranking criteria
= Based on content

* Number of occurrences of the search terms
* Similarity to the query text
= Based on link structure
* Backlink count
* PageRank

= And more...

Textual similarity

% Vocabulary: [w,, ..., w,}
< IDF (Inverse Document Frequency): {f, ..., /,}
= f, = log, (total # of docs / # of docs containing w;)
< TF (Term Frequency): {p,, ..., p,}
= p; = # of times w;, appears on p
+ Significance of words on page p: [p, 1, ..., p, /.1
< Textual similarity between two pages p and g is

defined to be {p, f1, ..., p, 1.} g1 frs s q, 1,1 =
a0
= 4 could be the query text

Why weight significance by IDF?

15

Problems with content-based ranking

< Many pages containing search terms may be of poor
quality or irrelevant
= Example: a page with just a line “search engine”
< Many high-quality or relevant pages do not even
contain the search terms
= Example: Google homepage
< Page containing more occurrences of the search
terms are ranked higher; spamming is easy

= Example: a page with line “search engine” repeated
many times

Backlink

< A page with more backlinks is ranked higher

% Intuition: Each backlink is a “vote” for the page’s
importance

Google’s PageRank

< Main idea: Pages pointed by high-ranking pages are
ranked higher
® Definition is recursive by design
= Based on global link structure; hard to spam
< Naive PageRank
= N(p): number of outgoing links from page p
= B(p): set of pages that point to p
= PageRank(p) = zquw (PageRank(g)/ N(g))
“Each page p gets a boost of its importance from each page that
points to p

Each page g evenly distributes its importance to all pages that g
points to

Calculating naive PageRank

+ Initially, set all PageRank’s to 1; then evaluate
PageRank(p) < ZqEB(p) (PageRank(g)/N(g))
repeatedly until the values converge (i.e. a fixed

05 0
=0 0
05 1

point is reached)

I Amazon M Microsoftl

—
N

n 11 1.25] |1.125] |1.25 1.2
m|=|(1],10.5(,10.75},]0.5 |,]0.68751, ..., 0.6
a yps)p 1.375] [1.0625 {23

Random surfer model

< A random surfer
= Starts with a random page
= Randomly selects a link on the page to visit next

= Never uses the “back” button

< PageRank(p) measures the probability that a random
surfer visits page p

Problems with the naive PageRank

< Dead end: a page with no []
outgoing links
® A dead end causes all
importance to “leak”
eventually out of the Web

I Amazon

< Spider trap: a group of

pages with no links out of [
the group
= A spider trap will eventually

accumulate all importance I Amazon

of the Web

Practical PageRank

% d: decay factor
< PageRank() =
d - 2, (PageRank(q)/N(g)) + (1=d)

% Intuition in the random surfer model
= A surfer occasionally gets bored and jump to a random
page on the Web instead of following a random link on
the current page

22

Google (1998)

< Inverted lists in practice contain a lot of context information

Hit: 2 bytes Relative
Capitalization_font size
plain:[cap:1 | imp:3 position: 12 ithin the page
In URL/ticle/meta tag fancy:[cap:1 [imp =7 [fype:4 | posifion: 8 Within the page
In anchor rextanchor: [cap:1 [Tmp =7 [type: 4 Thash:4 [pos: 4Within the anchor
URL
associated

% PageRank is not the final ranking with the anchor

= Type-weight: depends on the type of the occurrence
* For example, large font weights more than small font
= Count-weight: depends on the number of occurrences
* Increases linearly first but then tapers off
® For multiple search terms, nearby occurrences are matched
together and a proximity measure is computed

¢ Closer proximity weights more

Suffix arrays (SODA, 1990)

% Another index for searching text

< Conceptually, to construct a suffix array for string §
* Enumerate all |§| suffixes of §
= Sort these suffixes in lexicographical order

% To search for occurrences of a substring

® Do a binary search on the suffix array

Suffix array example

§ = mississippi q = sip

Suffixes: Sorted suffixes: Suffix array:
mississippi i 10
ississippi ippi 7
ssissippi issippi 4 No need to store
sissippi ississippi 1 the suffix strings;
issippi mississippi 0 just store where
ssippi D pi 9 they start
sippi ppi 8
ippi Esippi 6 0q| log |s
ppi Qsissippi 3
pi ssippi 5
i ssissippi 2

One improvement

< Remember how much of the query string has been
matched

g = sisterhood

low:) sissipi... Matched 3 characters
middle: 5 sisterhood. .. Start checking from the 4% character
high: D sistering... Matched 5 characters

26

Another improvement

% Pre-compute the longest common prefix
information between suffixes

® For all (Jow, middle) and (middle, high) pairs that can come
up in a binary search

g = sisterhood 0(|q| + log |S]
low: L sissipi... Matched 3 characters
middle: T ;i-s'terhood. .. Start checking from the 7% character

...) Matched 6 characters (pre-computed)
high: D sistering. .. Matched 6 characters

N
§

Suffix arrays versus inverted lists

Trie: a string index
< A tree with edges labeled by characters

< A node represents the string obtained by
concatenating all characters along the path from the
root

What'’s the max fan-out?

< Compact trie: replace a path without branches by a
single edge labeled by a string

29

Suffix tree

Index all suffixes of a large string in a compact trie
@ Can support the same queries as a suffix array
< Internal nodes have fan-out > 2 (except the root)

< No two edges out of the same node can share the
same first character

To get linear space

% Instead of inlining the string labels, store pointers to
them in the original string

Patricia trie, Pat tree, String B-tree

A Patricia trie is just like a compact trie, but

< Instead of labeling each edge by a string, only label by the
first character and the string length

< Leaves point to strings

@ Faster search (especially for external memory) because of
inlining of the first character

= But must validate answer at leaves for skipped characters

< A Pat tree indexes all suffixes of a large string in a Patricia
trie

< A String B-tree uses a Patricia trie to store and compare
strings in B-tree nodes

Summary

< General tree-based string indexing tricks
® Trie, Patricia trie, String B-tree
= Good exercise: put them in a GiST! ©
< Two general ways to index for substring queries
= Index words: inverted lists, signature files
® Index all suffixes: suffix array, suffix tree, Pat tree
< Web search and information retrieval go beyond
substring queries
= TF/IDF, PageRank, ...

