
1

Indexing: Part IV

CPS 216

Advanced Database Systems

2

Announcements (February 17)

Homework #2 due in two weeks

Reading assignments for this and next week
“The” query processing survey by Graefe

Due next Wednesday

Midterm and course project proposal in three weeks

3

Keyword search

Google…
Web | Images | Groups
| Directory
Google Search | I’m
Feeling Lucky
Advanced Search |
Preferences | Language
Tools…

Association for
Computing Machinery
Founded in 1947,
ACM is the world’s
first educational and
scientific computing
society. Today, our
members—…

CPS 216: Advanced
Database Systems
(Fall 2001)
Course Information
Course Description /
Time and Place /
Books
Resources: Staff…

The Internet Movie
Database (IMDb)…

… Search the Internet
Movie Database. For
more search options,
please visit Search
central…

database AND search Search

What are the documents containing both “database” and “search”?

2

4

Keywords × documents

Inverted lists: store the matrix by rows
Signature files: store the matrix by columns

With compression, of course!

1 1 1 … 1
1 1 0 … 0
0 0 1 … 0
0 1 0 … 1
0 0 1 … 0

… … … … …

Doc
um

en
t 1

Doc
um

en
t 2

Doc
um

en
t 3

Doc
um

en
t n

All documents

“a”

“database”
“cat”

“dog”
“search”

All keywords

1 means keyword appears in the document
0 means otherwise

5

Inverted lists

Store the matrix by rows
For each keyword, store an inverted list
hkeyword, doc-id-listi
h“database”, {3, 7, 142, 857, …}i
h“search”, {3, 9, 192, 512, …}i
It helps to sort doc-id-list (why?)

Vocabulary index on keywords
B+-tree or hash-based

How large is an inverted list index?

6

Using inverted lists

Documents containing “database”
Use the vocabulary index to find the inverted list for
“database”

Return documents in the inverted list

Documents containing “database” AND “search”

OR? NOT?

3

7

What are “all” the keywords?

All sequences of letters (up to a given length)?
… that actually appear in documents!

All words in English?

Plus all phrases?
Alternative: approximate phrase search by proximity

Minus all stop words
They appear in nearly every document; not useful in search

Example: a, of, the, it

Combine words with common stems
They can be treated as the same for the purpose of search

Example: database, databases

8

Frequency and proximity

Frequency
hkeyword, { hdoc-id, number-of-occurrencesi,

hdoc-id, number-of-occurrencesi,
… }i

Proximity (and frequency)
hkeyword, { hdoc-id, hposition-of-occurrence1,

position-of-occurrence2, …i,
hdoc-id, hposition-of-occurrnece1, …ii,
… }i

When doing AND, check for positions that are near

9

Signature files

Store the matrix by columns and compress them
For each document, store a w-bit signature
Each word is hashed into a w-bit value, with only s
< w bits turned on
Signature is computed by taking the bit-wise OR of
the hash values of all words on the document

Some false positives; no false negatives

hash(“database”) = 0110
hash(“dog”) = 1100
hash(“cat”) = 0010

doc1 contains “database”: 0110
doc2 contains “dog”: 1100

doc3 contains “cat” and “dog”: 1110

Does doc3 contain
“database”?

4

10

Bit-sliced signature files
Motivation

To check if a document contains a
word, we only need to check the
bits that are set in the word’s hash
value
So why bother retrieving all w bits
of the signature?

Instead of storing n signature
files, store w bit slices
Only check the slices that
correspond to the set bits in the
word’s hash value
Start from the sparse slices

doc signature
1 0 0 0 0 1 0 0 0
2 0 0 0 0 1 0 0 0
3 0 0 0 1 1 0 1 0
4 0 1 1 0 1 1 0 0
… …
n 0 0 0 0 1 0 1 0

Bit-sliced signature files

Slice 0Slice 7 …

Starting to look like
an inverted list again!

11

Inverted lists versus signatures
Inverted lists better for most purposes (TODS, 1998)
Problems of signature files

False positives
Hard to use because s, w, and the hash function need tuning to
work well
Long documents will likely have mostly 1’s in signatures
Common words will create mostly 1’s for their slices
Difficult to extend with features such as frequency, proximity

Saving grace of signature files
Sizes are tunable
Good for lots of search terms
Good for computing similarity of documents

12

Ranking result pages

A single search may return many pages
A user will not look at all result pages

Complete result may be unnecessary

Result pages need to be ranked

Possible ranking criteria
Based on content

• Number of occurrences of the search terms

• Similarity to the query text

Based on link structure
• Backlink count

• PageRank

And more…

5

13

Textual similarity

Vocabulary: [w1, …, wn]
IDF (Inverse Document Frequency): [f1, …, fn]
fi = log2 (total # of docs / # of docs containing wi)

TF (Term Frequency): [p1, …, pn]
pi = # of times wi appears on p

Significance of words on page p: [p1 f1, …, pn fn]
Textual similarity between two pages p and q is
defined to be [p1 f1, …, pn fn] · [q1 f1, …, qn fn] =
p1 q1 f12 + … + pn qn fn2

q could be the query text

14

Why weight significance by IDF?

15

Problems with content-based ranking

Many pages containing search terms may be of poor
quality or irrelevant

Example: a page with just a line “search engine”

Many high-quality or relevant pages do not even
contain the search terms

Example: Google homepage

Page containing more occurrences of the search
terms are ranked higher; spamming is easy

Example: a page with line “search engine” repeated
many times

6

16

Backlink

A page with more backlinks is ranked higher

Intuition: Each backlink is a “vote” for the page’s
importance

17

Google’s PageRank

Main idea: Pages pointed by high-ranking pages are
ranked higher

Definition is recursive by design
Based on global link structure; hard to spam

Naïve PageRank
N(p): number of outgoing links from page p
B(p): set of pages that point to p
PageRank(p) = Σq∈B(p) (PageRank(q) ⁄ N(q))
Each page p gets a boost of its importance from each page that
points to p
Each page q evenly distributes its importance to all pages that q
points to

18

Calculating naïve PageRank

Initially, set all PageRank’s to 1; then evaluate
PageRank(p) ← Σq∈B(p) (PageRank(q) ⁄ N(q))
repeatedly until the values converge (i.e. a fixed
point is reached)

Netscape

Amazon Microsoft

n 0.5 0 0.5 n
m = 0 0 0.5 m
a 0.5 1 0 a

n 1 1 1.25 1.125 1.25 1.2
m = 1 , 0.5 , 0.75 , 0.5 , 0.6875 , …, 0.6
a 1 1.5 1 1.375 1.0625 1.2

7

19

Random surfer model

A random surfer
Starts with a random page

Randomly selects a link on the page to visit next

Never uses the “back” button

PageRank(p) measures the probability that a random
surfer visits page p

20

Problems with the naïve PageRank

Dead end: a page with no
outgoing links

A dead end causes all
importance to “leak”
eventually out of the Web

Spider trap: a group of
pages with no links out of
the group

A spider trap will eventually
accumulate all importance
of the Web

Netscape

Amazon Microsoft

Netscape

Amazon Microsoft

21

Practical PageRank

d: decay factor

PageRank(p) =
d · Σq∈B(p) (PageRank(q) ⁄ N(q)) + (1 – d)

Intuition in the random surfer model
A surfer occasionally gets bored and jump to a random
page on the Web instead of following a random link on
the current page

8

22

Google (1998)
Inverted lists in practice contain a lot of context information

PageRank is not the final ranking
Type-weight: depends on the type of the occurrence

• For example, large font weights more than small font

Count-weight: depends on the number of occurrences
• Increases linearly first but then tapers off

For multiple search terms, nearby occurrences are matched
together and a proximity measure is computed

• Closer proximity weights more

Capitalization
Relative
font size

In URL/title/meta tag

In anchor text

Within the page
Within the page
Within the anchor

URL
associated
with the anchor

23

Suffix arrays (SODA, 1990)

Another index for searching text

Conceptually, to construct a suffix array for string S
Enumerate all |S| suffixes of S

Sort these suffixes in lexicographical order

To search for occurrences of a substring
Do a binary search on the suffix array

24

Suffix array example

Suffixes:
mississippi

ississippi
ssissippi
sissippi
issippi
ssippi
sippi
ippi
ppi
pi
i

Sorted suffixes:
i
ippi
issippi
ississippi
mississippi
pi
ppi
sippi
sissippi
ssippi
ssissippi

No need to store
the suffix strings;
just store where
they start

Suffix array:
10
7
4
1
0
9
8
6
3
5
2

S = mississippi q = sip

O(|q| · log |S|)

9

25

One improvement

Remember how much of the query string has been
matched

q = sisterhood

…
sissipi…
…
sisterhood…
…
sistering…
…

Matched 3 characters

Matched 5 characters

Start checking from the 4th character

low:

middle:

high:

26

Another improvement

Pre-compute the longest common prefix
information between suffixes

For all (low, middle) and (middle, high) pairs that can come
up in a binary search

q = sisterhood
…
sissipi…
…
sisterhood…
…
sistering…
…

Matched 3 characters

Matched 6 characters

Start checking from the 7th character

low:

middle:

high:
Matched 6 characters (pre-computed)

O(|q| + log |S|)

27

Suffix arrays versus inverted lists

10

28

Trie: a string index

A tree with edges labeled by characters

A node represents the string obtained by
concatenating all characters along the path from the
root

Compact trie: replace a path without branches by a
single edge labeled by a string

a

c l

b p

p

e le

a

c

b
pp

e lle

What’s the max fan-out?

29

Suffix tree

Index all suffixes of a large string in a compact trie
Can support the same queries as a suffix array
Internal nodes have fan-out ≥ 2 (except the root)
No two edges out of the same node can share the
same first character

To get linear space
Instead of inlining the string labels, store pointers to
them in the original string

30

Patricia trie, Pat tree, String B-tree
A Patricia trie is just like a compact trie, but

Instead of labeling each edge by a string, only label by the
first character and the string length
Leaves point to strings
Faster search (especially for external memory) because of
inlining of the first character
But must validate answer at leaves for skipped characters

A Pat tree indexes all suffixes of a large string in a Patricia
trie
A String B-tree uses a Patricia trie to store and compare
strings in B-tree nodes

11

31

Summary

General tree-based string indexing tricks
Trie, Patricia trie, String B-tree

Good exercise: put them in a GiST! ☺

Two general ways to index for substring queries
Index words: inverted lists, signature files

Index all suffixes: suffix array, suffix tree, Pat tree

Web search and information retrieval go beyond
substring queries

TF/IDF, PageRank, …

