
1

Indexing: Part IV

CPS 216

Advanced Database Systems

2

Announcements (February 17)

�Homework #2 due in two weeks

� Reading assignments for this and next week
� “The” query processing survey by Graefe

� Due next Wednesday

�Midterm and course project proposal in three weeks

3

Keyword search

Google…
Web | Images | Groups
| Directory
Google Search | I’m
Feeling Lucky
Advanced Search |
Preferences | Language
Tools…

Association for
Computing Machinery
Founded in 1947,
ACM is the world’s
first educational and
scientific computing
society. Today, our
members—…

CPS 216: Advanced
Database Systems
(Fall 2001)
Course Information
Course Description /
Time and Place /
Books
Resources: Staff…

The Internet Movie
Database (IMDb)…

… Search the Internet
Movie Database. For
more search options,
please visit Search
central…

database AND search Search

What are the documents containing both “database” and “search”?

4

Keywords × documents

� Inverted lists: store the matrix by rows
� Signature files: store the matrix by columns
With compression, of course!

1 1 1 … 1
1 1 0 … 0
0 0 1 … 0
0 1 0 … 1
0 0 1 … 0

… … … … …

Doc
um

en
t 1

Doc
um

en
t 2

Doc
um

en
t 3

Doc
um

en
t n

All documents

“a”

“database”
“cat”

“dog”
“search”

All keywords

1 means keyword appears in the document
0 means otherwise

5

Inverted lists

� Store the matrix by rows
� For each keyword, store an inverted list
� hkeyword, doc-id-listi
� h“database”, {3, 7, 142, 857, …}i
� h“search”, {3, 9, 192, 512, …}i
� It helps to sort doc-id-list (why?)

�Vocabulary index on keywords
� B+-tree or hash-based

�How large is an inverted list index?

6

Using inverted lists

�Documents containing “database”
� Use the vocabulary index to find the inverted list for

“database”

� Return documents in the inverted list

�Documents containing “database” AND “search”
� Return documents in the intersection of the two inverted

lists

�OR? NOT?
� Union and difference, respectively

2

7

What are “all” the keywords?

� All sequences of letters (up to a given length)?
� … that actually appear in documents!

� All words in English?

� Plus all phrases?
� Alternative: approximate phrase search by proximity

� Minus all stop words
� They appear in nearly every document; not useful in search

� Example: a, of, the, it

� Combine words with common stems
� They can be treated as the same for the purpose of search

� Example: database, databases

8

Frequency and proximity

� Frequency
� hkeyword, { hdoc-id, number-of-occurrencesi,

hdoc-id, number-of-occurrencesi,
… }i

� Proximity (and frequency)
� hkeyword, { hdoc-id, hposition-of-occurrence1,

position-of-occurrence2, …i,
hdoc-id, hposition-of-occurrnece1, …ii,
… }i

� When doing AND, check for positions that are near

9

Signature files

� Store the matrix by columns and compress them
� For each document, store a w-bit signature
� Each word is hashed into a w-bit value, with only s

< w bits turned on
� Signature is computed by taking the bit-wise OR of

the hash values of all words on the document

) Some false positives; no false negatives

hash(“database”) = 0110
hash(“dog”) = 1100
hash(“cat”) = 0010

doc1 contains “database”: 0110
doc2 contains “dog”: 1100

doc3 contains “cat” and “dog”: 1110

Does doc3 contain
“database”?

10

Bit-sliced signature files
� Motivation
� To check if a document contains a

word, we only need to check the
bits that are set in the word’s hash
value

� So why bother retrieving all w bits
of the signature?

� Instead of storing n signature
files, store w bit slices

� Only check the slices that
correspond to the set bits in the
word’s hash value

� Start from the sparse slices

doc signature
1 0 0 0 0 1 0 0 0
2 0 0 0 0 1 0 0 0
3 0 0 0 1 1 0 1 0
4 0 1 1 0 1 1 0 0
… …
n 0 0 0 0 1 0 1 0

Bit-sliced signature files

Slice 0Slice 7 …

Starting to look like
an inverted list again!

11

Inverted lists versus signatures
� Inverted lists better for most purposes (TODS, 1998)
� Problems of signature files
� False positives
� Hard to use because s, w, and the hash function need tuning to

work well
� Long documents will likely have mostly 1’s in signatures
� Common words will create mostly 1’s for their slices
� Difficult to extend with features such as frequency, proximity

� Saving grace of signature files
� Sizes are tunable
� Good for lots of search terms
� Good for computing similarity of documents

12

Ranking result pages

� A single search may return many pages
� A user will not look at all result pages

� Complete result may be unnecessary

)Result pages need to be ranked

� Possible ranking criteria
� Based on content

• Number of occurrences of the search terms

• Similarity to the query text

� Based on link structure
• Backlink count

• PageRank

� And more…

3

13

Textual similarity

�Vocabulary: [w1, …, wn]
� IDF (Inverse Document Frequency): [f1, …, fn]
� fi = log2 (total # of docs / # of docs containing wi)

�TF (Term Frequency): [p1, …, pn]
� pi = # of times wi appears on p

� Significance of words on page p: [p1 f1, …, pn fn]
�Textual similarity between two pages p and q is

defined to be [p1 f1, …, pn fn] · [q1 f1, …, qn fn] =
p1 q1 f12 + … + pn qn fn2

� q could be the query text

14

Why weight significance by IDF?

�Without IDF weighting, the similarity measure
would be dominated by the stop words

� “the” occurs frequently on the Web, so its
occurrence on a particular page should be considered
less significant

� “engine” occurs infrequently on the Web, so its
occurrence on a particular page should be considered
more significant

15

Problems with content-based ranking

�Many pages containing search terms may be of poor
quality or irrelevant
� Example: a page with just a line “search engine”

�Many high-quality or relevant pages do not even
contain the search terms
� Example: Google homepage

� Page containing more occurrences of the search
terms are ranked higher; spamming is easy
� Example: a page with line “search engine” repeated

many times

16

Backlink

�A page with more backlinks is ranked higher

� Intuition: Each backlink is a “vote” for the page’s
importance

�Based on local link structure; still easy to spam
� Create lots of pages that point to a particular page

17

Google’s PageRank

�Main idea: Pages pointed to by high-ranking pages
are ranked higher
� Definition is recursive by design
� Based on global link structure; hard to spam

� Naïve PageRank
� N(p): number of outgoing links from page p
� B(p): set of pages that point to p
� PageRank(p) = Σq∈B(p) (PageRank(q) ⁄ N(q))
)Each page p gets a boost of its importance from each page that

points to p
)Each page q evenly distributes its importance to all pages that q

points to

18

Calculating naïve PageRank

� Initially, set all PageRank’s to 1; then evaluate
PageRank(p) ← Σq∈B(p) (PageRank(q) ⁄ N(q))
repeatedly until the values converge (i.e. a fixed
point is reached)

Netscape

Amazon Microsoft

n 0.5 0 0.5 n
m = 0 0 0.5 m
a 0.5 1 0 a

n 1 1 1.25 1.125 1.25 1.2
m = 1 , 0.5 , 0.75 , 0.5 , 0.6875 , …, 0.6
a 1 1.5 1 1.375 1.0625 1.2

4

19

Random surfer model

�A random surfer
� Starts with a random page

� Randomly selects a link on the page to visit next

� Never uses the “back” button

� PageRank(p) measures the probability that a random
surfer visits page p

20

Problems with the naïve PageRank

�Dead end: a page with no
outgoing links
� A dead end causes all

importance to “leak”
eventually out of the Web

� Spider trap: a group of
pages with no links out of
the group
� A spider trap will eventually

accumulate all importance
of the Web

Netscape

Amazon Microsoft

Netscape

Amazon Microsoft

21

Practical PageRank

� d: decay factor

� PageRank(p) =
d · Σq∈B(p) (PageRank(q) ⁄ N(q)) + (1 – d)

� Intuition in the random surfer model
� A surfer occasionally gets bored and jump to a random

page on the Web instead of following a random link on
the current page

22

Google (1998)
� Inverted lists in practice contain a lot of context information

� PageRank is not the final ranking
� Type-weight: depends on the type of the occurrence

• For example, large font weights more than small font

� Count-weight: depends on the number of occurrences
• Increases linearly first but then tapers off

� For multiple search terms, nearby occurrences are matched
together and a proximity measure is computed

• Closer proximity weights more

Capitalization
Relative
font size

In URL/title/meta tag

In anchor text

Within the page
Within the page
Within the anchor

URL
associated
with the anchor

23

Suffix arrays (SODA, 1990)

�Another index for searching text

�Conceptually, to construct a suffix array for string S
� Enumerate all |S| suffixes of S

� Sort these suffixes in lexicographical order

�To search for occurrences of a substring
� Do a binary search on the suffix array

24

Suffix array example

Suffixes:
mississippi

ississippi
ssissippi
sissippi
issippi
ssippi
sippi
ippi
ppi
pi
i

Sorted suffixes:
i
ippi
issippi
ississippi
mississippi
pi
ppi
sippi
sissippi
ssippi
ssissippi

No need to store
the suffix strings;
just store where
they start

Suffix array:
10
7
4
1
0
9
8
6
3
5
2

S = mississippi q = sip

O(|q| · log |S|)

5

25

One improvement

� Remember how much of the query string has been
matched

q = sisterhood

…
sissipi…
…
sisterhood…
…
sistering…
…

Matched 3 characters

Matched 6 characters

Start checking from the 4th character

low:

middle:

high:

26

Another improvement

� Pre-compute the longest common prefix
information between suffixes
� For all (low, middle) and (middle, high) pairs that can come

up in a binary search

q = sisterhood
…
sissipi…
…
sisterhood…
…
sistering…
…

Matched 3 characters

Matched 6 characters

Start checking from the 7th character

low:

middle:

high:
Matched 6 characters (pre-computed)

O(|q| + log |S|)

27

Suffix arrays versus inverted lists

� Suffix arrays are more powerful because they index
all substrings (not just words)
� No problem with long phase searches

� No problem if there is no word boundary

� No problem with a huge vocabulary of words

� Suffix arrays use more space than inverted lists?
� Check out compressed suffix arrays (STOC 2000)

28

Trie: a string index

�A tree with edges labeled by characters

�A node represents the string obtained by
concatenating all characters along the path from the
root

�Compact trie: replace a path without branches by a
single edge labeled by a string

a

c l

b p

p

e le

a

c

b
pp

e lle

What’s the max fan-out?

29

Suffix tree

Index all suffixes of a large string in a compact trie
)Can support the same queries as a suffix array
� Internal nodes have fan-out ≥ 2 (except the root)
�No two edges out of the same node can share the

same first character

To get linear space
� Instead of inlining the string labels, store pointers to

them in the original string
)Bad for external memory

30

Patricia trie, Pat tree, String B-tree
A Patricia trie is just like a compact trie, but
� Instead of labeling each edge by a string, only label by the

first character and the string length
� Leaves point to strings
) Faster search (especially for external memory) because of

inlining of the first character
) But must validate answer at leaves for skipped characters

� A Pat tree indexes all suffixes of a large string in a Patricia
trie

� A String B-tree uses a Patricia trie to store and compare
strings in B-tree nodes

6

31

Summary

�General tree-based string indexing tricks
� Trie, Patricia trie, String B-tree

� Good exercise: put them in a GiST! ☺

�Two general ways to index for substring queries
� Index words: inverted lists, signature files

� Index all suffixes: suffix array, suffix tree, Pat tree

�Web search and information retrieval go beyond
substring queries
� TF/IDF, PageRank, …

