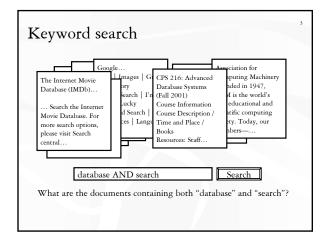
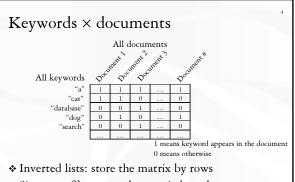


Announcements (February 17)

- ❖ Homework #2 due in two weeks
- * Reading assignments for this and next week
 - "The" query processing survey by Graefe
 - Due next Wednesday
- * Midterm and course project proposal in three weeks





- ❖ Signature files: store the matrix by columns
- With compression, of course!

Inverted lists

- Store the matrix by rows
- * For each keyword, store an inverted list
 - ⟨keyword, doc-id-list⟩
 - ("database", {3, 7, 142, 857, ...})
 - ("search", {3, 9, 192, 512, ...})
 - It helps to sort *doc-id-list* (why?)
- Vocabulary index on keywords
 - B+-tree or hash-based
- How large is an inverted list index?

Using inverted lists

- Documents containing "database"
 - Use the vocabulary index to find the inverted list for "database"
 - Return documents in the inverted list
- * Documents containing "database" AND "search"
 - Return documents in the intersection of the two inverted lists
- * OR? NOT?
 - Union and difference, respectively

What are "all" the keywords?

- All sequences of letters (up to a given length)?
 - ... that actually appear in documents!
- All words in English?
- * Plus all phrases?
 - Alternative: approximate phrase search by proximity
- * Minus all stop words
 - They appear in nearly every document; not useful in search
 - Example: a, of, the, it
- * Combine words with common stems
 - They can be treated as the same for the purpose of search
 - Example: database, databases

Frequency and proximity

- Frequency
 - \(\langle doc-id\), number-of-occurrences\(\rangle\), ■ ⟨keyword, { (doc-id, number-of-occurrences),
- Proximity (and frequency)
 - ⟨keyword, { \(\langle doc-id\), \(\langle position-of-occurrence_1\), position-of-occurrence, ... >, $\langle doc-id, \langle position-of-occurrece_1, \ldots \rangle \rangle$,
 - When doing AND, check for positions that are near

Signature files

- * Store the matrix by columns and compress them
- ❖ For each document, store a w-bit signature
- ❖ Each word is hashed into a w-bit value, with only s < w bits turned on
- * Signature is computed by taking the bit-wise OR of the hash values of all words on the document

```
bash("dog") = 1100
bash("cat") = 0010
```

Does doc, contain doc, contains "database": 0110 "database"? doc2 contains "dog": 1100 doc, contains "cat" and "dog": 1110

Fome false positives; no false negatives

Bit-sliced signature files

- ❖ Motivation
 - To check if a document contains a word, we only need to check the bits that are set in the word's hash
 - So why bother retrieving all w bits of the signature?
- Instead of storing n signature files, store w bit slices
- Only check the slices that correspond to the set bits in the word's hash value
- Start from the sparse slices

Bit-sliced signature files

Starting to look like an inverted list again!

Inverted lists versus signatures

- ❖ Inverted lists better for most purposes (TODS, 1998)
- Problems of signature files
 - False positives
 - Hard to use because s, w, and the hash function need tuning to work well
 - Long documents will likely have mostly 1's in signatures
 - Common words will create mostly 1's for their slices
 - Difficult to extend with features such as frequency, proximity
- Saving grace of signature files
 - Sizes are tunable
 - Good for lots of search terms.
 - Good for computing similarity of documents

Ranking result pages

- A single search may return many pages
 - · A user will not look at all result pages
 - Complete result may be unnecessary
 - Result pages need to be ranked
- · Possible ranking criteria
 - Based on content
 - · Number of occurrences of the search terms
 - · Similarity to the query text
 - Based on link structure
 - · Backlink count
 - · PageRank
 - And more...

Textual similarity

- * Vocabulary: $[w_1, ..., w_n]$
- * IDF (Inverse Document Frequency): $\{f_1, ..., f_n\}$
 - $f_i = \log_2$ (total # of docs / # of docs containing w_i)
- ***** TF (Term Frequency): $\{p_1, ..., p_n\}$
 - $p_i = \#$ of times w_i appears on p
- * Significance of words on page $p: [p_1 f_1, ..., p_n f_n]$
- ***** Textual similarity between two pages p and q is defined to be $[p_1f_1, ..., p_nf_n] \cdot [q_1f_1, ..., q_nf_n] = p_1 q_1f_1^2 + ... + p_n q_nf_n^2$
 - \blacksquare *q* could be the query text

Why weight significance by IDF?

- Without IDF weighting, the similarity measure would be dominated by the stop words
- "the" occurs frequently on the Web, so its occurrence on a particular page should be considered less significant
- "engine" occurs infrequently on the Web, so its occurrence on a particular page should be considered more significant

Problems with content-based ranking

- Many pages containing search terms may be of poor quality or irrelevant
 - Example: a page with just a line "search engine"
- Many high-quality or relevant pages do not even contain the search terms
 - Example: Google homepage
- Page containing more occurrences of the search terms are ranked higher; spamming is easy
 - Example: a page with line "search engine" repeated many times

Backlink

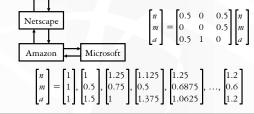
- * A page with more backlinks is ranked higher
- Intuition: Each backlink is a "vote" for the page's importance
- ❖ Based on local link structure; still easy to spam
 - Create lots of pages that point to a particular page

Google's PageRank

- Main idea: Pages pointed to by high-ranking pages are ranked higher
 - Definition is recursive by design
 - Based on global link structure; hard to spam
- ❖ Naïve PageRank
 - N(p): number of outgoing links from page p
 - *B*(*p*): set of pages that point to *p*
 - $\label{eq:pageRank} \bullet \ \operatorname{PageRank}(p) = \Sigma_{q \in B(p)} \left(\operatorname{PageRank}(q) / N(q) \right)$
 - FEach page p gets a boost of its importance from each page that points to p
 - $\ensuremath{\mathscr{C}}$ Each page q evenly distributes its importance to all pages that q points to

Calculating naïve PageRank

* Initially, set all PageRank's to 1; then evaluate PageRank(p) $\leftarrow \Sigma_{q \in B(p)}$ (PageRank(q)/N(q)) repeatedly until the values converge (i.e. a fixed point is reached)



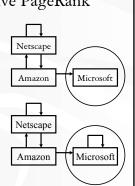
10

Random surfer model

- ❖ A random surfer
 - Starts with a random page
 - Randomly selects a link on the page to visit next
 - Never uses the "back" button
- PageRank(p) measures the probability that a random surfer visits page p

Problems with the naïve PageRank

- Dead end: a page with no outgoing links
 - A dead end causes all importance to "leak" eventually out of the Web
- Spider trap: a group of pages with no links out of the group
 - A spider trap will eventually accumulate all importance of the Web



Practical PageRank

- ❖ d: decay factor
- \Rightarrow PageRank(p) =

 $d \cdot \Sigma_{q \in B(p)} (\text{PageRank}(q) / N(q)) + (1 - d)$

- Intuition in the random surfer model
 - A surfer occasionally gets bored and jump to a random page on the Web instead of following a random link on the current page

Google (1998)

* Inverted lists in practice contain a lot of context information

Hit: 2	bytes	Relative				
Cap	italization	n font size				_
	cap:1	imp:3		position: 12		Within the page
In URL/title/meta tag fancy:						
In anchor textanchor:	cap:1	imp = 7	type: 4	hash:4	pos:	4within the anchor
				URL		

- * PageRank is not the final ranking
- with the anchor
- Type-weight: depends on the type of the occurrence
 For example, large font weights more than small font
- Count-weight: depends on the number of occurrences
 - · Increases linearly first but then tapers off
- For multiple search terms, nearby occurrences are matched together and a proximity measure is computed
 - · Closer proximity weights more

Suffix arrays (SODA, 1990)

- Another index for searching text
- ❖ Conceptually, to construct a suffix array for string S
 - Enumerate all |S| suffixes of S
 - Sort these suffixes in lexicographical order
- * To search for occurrences of a substring
 - Do a binary search on the suffix array

Suffix array example

S = mississippiq = sipSuffixes: Sorted suffixes: Suffix array: mississippi 10 ississippi ippi No need to store ssissippi issippi the suffix strings; sissippi ississippi just store where issippi mississippi 0 they start ssippi **⇒**pi sippi ppi $O(|q| \cdot \log |S|)$ ippi **>**sippi sissippi ppi ssippi 5 ssissippi

One improvement * Remember how much of the query string has been matched q = sisterhoodsissipi... Matched 3 characters low: Start checking from the 4th character middle: sisterhood... Matched 6 characters high: sistering...

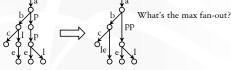
Another improvement ❖ Pre-compute the longest common prefix information between suffixes • For all (low, middle) and (middle, high) pairs that can come up in a binary search $O(|q| + \log |S|)$ q = sisterhoodMatched 3 characters sissipi... Start checking from the 7th character middle: ⇒ sisterhood... ... Matched 6 characters (pre-computed) Matched 6 characters sistering...

Suffix arrays versus inverted lists

- * Suffix arrays are more powerful because they index all substrings (not just words)
 - No problem with long phase searches
 - No problem if there is no word boundary
 - No problem with a huge vocabulary of words
- Suffix arrays use more space than inverted lists?
 - Check out compressed suffix arrays (STOC 2000)

Trie: a string index

- * A tree with edges labeled by characters
- ❖ A node represents the string obtained by concatenating all characters along the path from the



* Compact trie: replace a path without branches by a single edge labeled by a string

Suffix tree

Index all suffixes of a large string in a compact trie

- Ten support the same queries as a suffix array
- ❖ Internal nodes have fan-out ≥ 2 (except the root)
- No two edges out of the same node can share the same first character

To get linear space

- * Instead of inlining the string labels, store pointers to them in the original string
- → Bad for external memory

Patricia trie, Pat tree, String B-tree

A Patricia trie is just like a compact trie, but

- * Instead of labeling each edge by a string, only label by the first character and the string length
- Leaves point to strings
- Faster search (especially for external memory) because of inlining of the first character
- But must validate answer at leaves for skipped characters
- * A Pat tree indexes all suffixes of a large string in a Patricia
- * A String B-tree uses a Patricia trie to store and compare strings in B-tree nodes

Summary

- ❖ General tree-based string indexing tricks
 - Trie, Patricia trie, String B-tree
 - Good exercise: put them in a GiST! ©
- Two general ways to index for substring queries
 - Index words: inverted lists, signature files
 - Index all suffixes: suffix array, suffix tree, Pat tree
- Web search and information retrieval go beyond substring queries
 - TF/IDF, PageRank, ...