Query Processing

CPS 216
Advanced Database Systems

Announcements (February 22)

* Reading assignment for this week
- Variant indexes (due next Monday)
* Homework \#2 due in $11 / 2$ weeks (March 3)
\div Course project proposal due in 2 weeks
* Midterm in $21 / 2$ weeks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Overview

Many different ways of processing the same query \qquad

- Scan? Sort? Hash? Use an index?
- All with different performance characteristics
* Best choice depends on the situation
- Implement all alternatives \qquad
- Let the query optimizer choose at run-time

Notation

\star Relations: R, S

* Tuples: r, s
* Number of tuples: $|R|,|S|$
* Number of disk blocks: $B(R), B(S)$
* Number of memory blocks available: M
* Cost metric
- Number of I/O's
- Memory requirement

Table scan

* Scan table R and process the query
- Selection over R
- Projection of R without duplicate elimination
* I/O's: $B(R)$
- Trick for selection: stop early if it is a lookup by key
* Memory requirement: 2 (double buffering)
* Not counting the cost of writing the result out
- Same for any algorithm!
- Maybe not needed—results may be pipelined directly into another operator

Nested-loop join

\qquad
$* R \bowtie_{p} S$
\star For each block of R, and for each r in the block: \qquad
For each block of S, and for each s in the block:
Output $r s$ if p evaluates to true over r and s \qquad

- R is called the outer table; S is called the inner table
\therefore I/O's: $B(R)+|R| \cdot B(S)$
* Memory requirement: 4 (double buffering)
* Improvement: block-based nested-loop join
- For each block of R, and for each block of S :

For each r in the R block, and for each s in the S block: ...

- I/O's: $B(R)+B(R) \cdot B(S)$
- Memory requirement: same as before

More improvements of nested-loop join

* Stop early
- If the key of the inner table is being matched
- May reduce half of the I/O's (less for block-based)
* Make use of available memory

External merge sort

Problem: sort R, but R does not fit in memory

* Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
- There are $\lceil B(R) / M\rceil$ level- 0 sorted runs

Pass i : merge $(M-1)$ level-($i-1)$ runs at a time, and write out a level- i run

- ($M-1$) memory blocks for input, 1 to buffer output \qquad
- \# of level- i runs $=\lceil \#$ of level- $(i-1)$ runs $/(M-1)\rceil$
$*$ Final pass produces 1 sorted run
\qquad
\qquad

Example of external merge sort

\qquad

* Input: 1, 7, 4, 5, 2, 8, 9, 6, 3, 0
* Each block holds one number, and memory has 3 blocks
\qquad
Pass 0
- $1,7,4 \rightarrow 1,4,7$
- $5,2,8 \rightarrow 2,5,8$
- 9, 6, $3 \rightarrow 3,6,9$
- $0 \rightarrow 0$

Pass 1

- $1,4,7+2,5,8 \rightarrow 1,2,4,5,7,8$
- 3, 6, $9+0 \quad \rightarrow 0,3,6,9$
* Pass 2 (final)
- $1,2,4,5,7,8+0,3,6,9 \rightarrow 0,1,2,3,4,5,6,7,8,9$

Performance of external merge sort

\star Number of passes: $\left\lceil\log _{M-1}\lceil B(R) / M\rceil\right\rceil+1$

* I/O's
- Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
- Subtract $B(R)$ for the final pass
- Roughly, this is $O\left(B(R) \cdot \log _{M} B(R)\right)$
\star Memory requirement: M (as much as possible)

Some tricks for sorting

* Double buffering
- Allocate an additional block for each run
* Blocked I/O
- Instead of reading/writing one disk block at time, read/write a bunch ("cluster")

Dealing with input whose size is not an exact power of fan-in

Internal sort algorithm

* Quicksort

Fast

* Replacement selection
- One block for input, one for output, rest for a heap
- Fill the heap with input records
- Find the smallest record in the heap that is no less than the largest record in the current run
- If that exists, move it to the output buffer, and move a new record from input buffer into the heap
- If that does not exist, flush output and start a new run

Slower than quicksort, but produces longer runs (twice the size of memory if records are in random order)

Sort-merge join

$* R \bowtie_{R . A}=s . B$
$*$ Sort R and S by their join attributes, and then merge $r, s=$ the first tuples in sorted R and S
Repeat until one of R and S is exhausted:
If $r . A>s . B$ then $s=$ next tuple in S
else if $r . A<s . B$ then $r=$ next tuple in R else output all matching tuples, and
$r, s=$ next in R and S

* I/O's: sorting $+2 B(R)+2 B(S)$
- In most cases (e.g., join of key and foreign key)
- Worst case is $B(R) \cdot B(S)$: everything joins

Example

\[

\]

Optimization of SMJ

* Idea: combine join with the merge phase of merge sort
\star Sort: produce sorted runs of size M for R and S
\star Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance of two-pass SMJ

* I/O's: $3 \cdot(B(R)+B(S))$
$*$ Memory requirement
- To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M>$ $B(R) / M+B(S) / M$
- $M>\operatorname{sqrt}(B(R)+B(S))$

Other sort-based algorithms

\qquad
Union (set), difference, intersection

- More or less like SMJ
* Duplication elimination
- External merge sort
- Eliminate duplicates in sort and merge

GROUP BY and aggregation

- External merge sort
- Produce partial aggregate values in each run
- Combine partial aggregate values during merge
- Partial aggregate values don't always work though

Hash join

$\star R \bowtie_{R . A=S . B} S$

* Main idea
- Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
- If $r . A$ and $s . B$ get hashed to different partitions, they don't join

Nested-loop join considers all slots
Hash join considers only those along the diagonal

Partitioning phase

* Partition R and S according to the same hash function on their join attributes

Probing phase

Read in each partition of R, stream in the corresponding partition of S, join

- Typically build a hash table for the partition of R
- Not the same hash function used for partition, of course!

Performance of hash join

* I/O's: $3 \cdot(B(R)+B(S))$
* Memory requirement:
- In the probing phase, we should have enough memory to fit one partition of $R: M-1 \geq B(R) /(M-1)$
- $M>\operatorname{sqrt}(B(R))$
- We can always pick R to be the smaller relation, so: $M>\operatorname{sqrt}(\min (B(R), B(S))$

Hash join tricks

\nLeftarrow What if a partition is too large for memory?

- Read it back in and partition it further!
- See the duality in multi-pass merge sort here?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hybrid hash join

What if there is extra memory available?

- Use it to avoid writing/re-reading partitions
- Of both R and S !

\qquad
\qquad

Hash join versus SMJ

(Assuming two-pass)

* I/O's: same
* Memory requirement: hash join is lower
- $\operatorname{sqrt}(\min (B(R), B(S))<\operatorname{sqrt}(B(R)+B(S))$
* Other factors
- Hash join performance depends on the quality of the hash
- Might not get evenly sized buckets

What about nested-loop join?

Other hash-based algorithms

* Union (set), difference, intersection
- More or less like hash join
* Duplicate elimination
- Check for duplicates within each partition/bucket

GROUP BY and aggregation

- Apply the hash functions to GROUP BY attributes
- Tuples in the same group must end up in the same partition/bucket
- Keep a running aggregate value for each group

Duality of sort and hash

* Divide-and-conquer paradigm
- Sorting: physical division, logical combination
- Hashing: logical division, physical combination
* Handling very large inputs
- Sorting: multi-level merge
- Hashing: recursive partitioning
* I/O patterns
- Sorting: sequential write, random read (merge)
- Hashing: random write, sequential read (partition)

