
1

Query Processing

CPS 216

Advanced Database Systems

2

Announcements (February 22)

Reading assignment for this week
Variant indexes (due next Monday)

Homework #2 due in 1½ weeks (March 3)

Course project proposal due in 2 weeks

Midterm in 2½ weeks

3

Overview

Many different ways of processing the same query
Scan? Sort? Hash? Use an index?

All with different performance characteristics

Best choice depends on the situation
Implement all alternatives

Let the query optimizer choose at run-time

2

4

Notation

Relations: R, S

Tuples: r, s

Number of tuples: |R|, |S|

Number of disk blocks: B(R), B(S)

Number of memory blocks available: M

Cost metric
Number of I/O’s

Memory requirement

5

Table scan

Scan table R and process the query
Selection over R
Projection of R without duplicate elimination

I/O’s: B(R)
Trick for selection: stop early if it is a lookup by key

Memory requirement: 2 (double buffering)

Not counting the cost of writing the result out
Same for any algorithm!

Maybe not needed—results may be pipelined directly
into another operator

6

Nested-loop join
R p S
For each block of R, and for each r in the block:

For each block of S, and for each s in the block:
Output rs if p evaluates to true over r and s

R is called the outer table; S is called the inner table

I/O’s: B(R) + |R| ⋅ B(S)
Memory requirement: 4 (double buffering)
Improvement: block-based nested-loop join

For each block of R, and for each block of S:
For each r in the R block, and for each s in the S block: …

I/O’s: B(R) + B(R) ⋅ B(S)
Memory requirement: same as before

3

7

More improvements of nested-loop join

Stop early
If the key of the inner table is being matched

May reduce half of the I/O’s (less for block-based)

Make use of available memory

8

External merge sort

Problem: sort R, but R does not fit in memory

Pass 0: read M blocks of R at a time, sort them, and
write out a level-0 run

There are d B(R) / M e level-0 sorted runs

Pass i: merge (M – 1) level-(i-1) runs at a time, and
write out a level-i run

(M – 1) memory blocks for input, 1 to buffer output

of level-i runs = d # of level-(i–1) runs / (M – 1) e

Final pass produces 1 sorted run

9

Example of external merge sort
Input: 1, 7, 4, 5, 2, 8, 9, 6, 3, 0
Each block holds one number, and memory has 3 blocks
Pass 0

1, 7, 4 → 1, 4, 7
5, 2, 8 → 2, 5, 8
9, 6, 3 → 3, 6, 9
0 → 0

Pass 1
1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
3, 6, 9 + 0 → 0, 3, 6, 9

Pass 2 (final)
1, 2, 4, 5, 7, 8 + 0, 3, 6, 9 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

4

10

Performance of external merge sort

Number of passes: d log M–1 d B(R) / M e e + 1

I/O’s
Multiply by 2 ⋅ B(R): each pass reads the entire relation
once and writes it once

Subtract B(R) for the final pass

Roughly, this is O(B(R) ⋅ log M B(R))

Memory requirement: M (as much as possible)

11

Some tricks for sorting

Double buffering
Allocate an additional block for each run

Blocked I/O
Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)

Dealing with input whose size
is not an exact power of fan-in

12

Internal sort algorithm

Quicksort
Fast

Replacement selection
One block for input, one for output, rest for a heap
Fill the heap with input records
Find the smallest record in the heap that is no less than
the largest record in the current run

• If that exists, move it to the output buffer, and move a new
record from input buffer into the heap

• If that does not exist, flush output and start a new run

Slower than quicksort, but produces longer runs (twice
the size of memory if records are in random order)

5

13

Sort-merge join

R R.A = S.B S
Sort R and S by their join attributes, and then merge

r, s = the first tuples in sorted R and S
Repeat until one of R and S is exhausted:

If r.A > s.B then s = next tuple in S
else if r.A < s.B then r = next tuple in R
else output all matching tuples, and

r, s = next in R and S
I/O’s: sorting + 2 B(R) + 2 B(S)

In most cases (e.g., join of key and foreign key)
Worst case is B(R) ⋅ B(S): everything joins

14

Example

R: S: R R.A = S.B S:
r1.A = 1 s1.B = 1
r2.A = 3 s2.B = 2
r3.A = 3 s3.B = 3
r4.A = 5 s4.B = 3
r5.A = 7 s5.B = 8
r6.A = 7
r7.A = 8

r1 s1

r2 s3

r2 s4

r3 s3

r3 s4

r7 s5

15

Optimization of SMJ

Idea: combine join with the merge phase of merge sort

Sort: produce sorted runs of size M for R and S

Merge and join: merge the runs of R, merge the runs of S,
and merge-join the result streams as they are generated!

Merge

Merge

So
rt

ed
 r

un
s R

S

Disk Memory

Join

6

16

Performance of two-pass SMJ

I/O’s: 3 ⋅ (B(R) + B(S))

Memory requirement
To be able to merge in one pass, we should have enough
memory to accommodate one block from each run: M >
B(R) / M + B(S) / M

M > sqrt(B(R) + B(S))

17

Other sort-based algorithms

Union (set), difference, intersection
More or less like SMJ

Duplication elimination
External merge sort

• Eliminate duplicates in sort and merge

GROUP BY and aggregation
External merge sort

• Produce partial aggregate values in each run
• Combine partial aggregate values during merge
• Partial aggregate values don’t always work though

–

18

Hash join

R R.A = S.B S

Main idea
Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S
If r.A and s.B get hashed to different partitions, they
don’t join

Nested-loop join considers
all slots

1

2

1 2 3 4 5R

S
3
4

5

Hash join considers
only those along the diagonal

7

19

Partitioning phase

Partition R and S according to the same hash
function on their join attributes

M – 1 partitions of R

DiskMemory

R

Same for S

… …

20

Probing phase

Read in each partition of R, stream in the
corresponding partition of S, join

Typically build a hash table for the partition of R
• Not the same hash function used for partition, of course!

Disk Memory

R
partitions

S
partitions

…
…

…load

stream For each S tuple,
probe and join

21

Performance of hash join

I/O’s: 3 ⋅ (B(R) + B(S))

Memory requirement:
In the probing phase, we should have enough memory to
fit one partition of R: M – 1 ≥ B(R) / (M – 1)

M > sqrt(B(R))

We can always pick R to be the smaller relation, so:
M > sqrt(min(B(R), B(S))

8

22

Hash join tricks

What if a partition is too large for memory?
Read it back in and partition it further!

• See the duality in multi-pass merge sort here?

23

Hybrid hash join

What if there is extra memory available?
Use it to avoid writing/re-reading partitions

• Of both R and S!

DiskMemory

R

… …

A generalization of the idea is described in
the survey paper by Graefe

24

Hash join versus SMJ

(Assuming two-pass)

I/O’s: same

Memory requirement: hash join is lower
sqrt(min(B(R), B(S)) < sqrt(B(R) + B(S))

Other factors
Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets

9

25

What about nested-loop join?

26

Other hash-based algorithms

Union (set), difference, intersection
More or less like hash join

Duplicate elimination
Check for duplicates within each partition/bucket

GROUP BY and aggregation
Apply the hash functions to GROUP BY attributes

Tuples in the same group must end up in the same
partition/bucket

Keep a running aggregate value for each group

27

Duality of sort and hash

Divide-and-conquer paradigm
Sorting: physical division, logical combination

Hashing: logical division, physical combination

Handling very large inputs
Sorting: multi-level merge

Hashing: recursive partitioning

I/O patterns
Sorting: sequential write, random read (merge)

Hashing: random write, sequential read (partition)

