

Announcements (February 24)

More reading assignment for next week
Buffer management (due next Wednesday)

Homework #2 due next Thursday

* Course project proposal due in 11/2 weeks

* Midterm in two weeks

Christos Faloutsos (CMU) talk

- "Data Mining Using Fractals and Power Laws"
- 4-5pm, Monday, February 28
- 130A North Building (telecast from UNC)

Review

- * Many different ways of processing the same query
 - Scan (e.g., nested-loop join)
 - Sort (e.g., sort-merge join)
 - Hash (e.g., hash join)
 - ☞Index

Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
 - Use an ISAM, B^+ -tree, or hash index on R(A)
- * Range predicate: $\sigma_{A > v}(R)$
 - Use an ordered index (e.g., ISAM or B⁺-tree) on R(A)
 - Hash index is not applicable
- * Indexes other than those on R(A) may be useful
 - Example: B^+ -tree index on R(A, B)
 - How about B^+ -tree index on R(B, A)?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A (\sigma_A > v(R))$
- * Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

- ♦ Consider $\sigma_{A > v}(R)$ and a secondary, non-clustered index on R(A)
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies A > v
 Could happen even for equality predicates
 - I/O's for index-based selection: lookup + 20% |R|
 - I/O's for scan-based selection: B(R)
 - Table scan wins if a block contains more than 5 tuples

Index nested-loop join

- $\bigstar R \bowtie_{R.A = S.B} S$
- * Idea: use the value of R.A to probe the index on S(B)
- For each block of R, and for each r in the block:
 - Use the index on S(B) to retrieve *s* with s.B = r.AOutput *rs*
- * I/O's: B(R) + |R| · (index lookup)
 - Typically, the cost of an index lookup is 2-4 I/O's
 - Beats other join methods if |R| is not too big
 - Better pick R to be the smaller relation
- Memory requirement: 2

Tricks for index nested-loop join

Goal: reduce $|R| \cdot (index lookup)$

- For tree-based indexes, keep the upper part of the tree in memory
- For extensible hash index, keep the directory in memory
- * Sort or partition R according to the join attribute
 - Improves locality: subsequent lookup may follow the same path or go to the same bucket

Zig-zag join using ordered indexes

 $\bigstar R \bowtie_{R.A = S.B} S$

- Idea: use the ordering provided by the indexes on R(A) and S(B) to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 Possibly skipping many keys that do not match

Bitmap index

Value-list index—stores the matrix by rows

12

- Traditionally list contains pointers to tuples
- B⁺-tree: tuples with same search key values
- Inverted list: documents with same keywords
- If there are not many search key values, and there are lots of 1's in each row, pointer list is not spaceefficient
 - How about a bitmap?
 - Still a B⁺-tree, except leaves have a different format

Technicalities

- ♦ How do we go from a bitmap index (0 to n 1) to the actual tuple?
- The more level of indirection solves everything
- The or of the second second
- * In either case, certain block/slot may be invalid
 - Because of deletion, or variable-length tuples
 - Keep an existence bitmap: bit set to 1 if tuple exists

Bitmap versus traditional value-list

- * Operations on bitmaps are faster than pointer lists
 - Bitmap AND: bit-wise AND
 - Value-list AND: sort-merge join
- Bitmap is more efficient when the matrix is sufficiently dense; otherwise, pointer list is more efficient
 - Smaller means more in memory and fewer I/O's
- Generalized value-list index: with both bitmap and pointer list as alternatives

Why projection index?

- Idea: still a table scan, but we are scanning a much smaller table (project index)
 - Savings could be substantial for long tuples with lots of attributes

16

Looks familiar?

- If a column stores binary numbers, then slice their bits vertically
 - Basically a projection index by slices

Aggregate query processing example

SELECT SUM(dollar_sales) FROM Sales WHERE condition;

- * Already found B_f (a bitmap or a sorted list of TID's that point to *Sales* tuples that satisfy *condition*)
 - Probably used a secondary index
- * Need to compute SUM(*dollar_sales*) for tuples in B_f

SUM without any index

- For each tuple in B_{β} go fetch the actual tuple, and add *dollar sales* to a running sum
- I/O's: number of Sales blocks with B_f tuples
 Assuming we fetch them in sorted order

SUM with a value-list index

- Assume a value-list index on Sales(dollar_sales)
- Idea: the index stores *dollar_sales* values and their counts (in a pretty compact form)

20

21

- ★ sum = 0; Scan Sales(dollar_sales) index; for each indexed value v with value-list B_v: sum += v × count-1-bits(B_v AND B_ρ);
- \clubsuit I/Os: number of blocks taken by the value-list index
- Bitmaps can possibly speed up AND and reduce the size of the index

SUM with a projection index

- Assume a project index on Sales(dollar_sales)
- Idea: merge join B_f and the projection index, add joining tuples' *dollar_sales* to a running sum
 - Assuming both B_f and the index are sorted on TID
- I/O's: number of blocks taken by the projection index
 - Compared with a value-list index, the projection index may be more compact (no empty space or pointers), but it does store duplicate *dollar_sales* values
- * Also: simpler algorithm, fewer CPU operations

SUM with a bit-sliced index

* Assume a bit-sliced index on Sales(dollar_sales), with slices $B_{k-1}, ..., B_1, B_0$

22

23

24

- $\sup_{i \in I} \sup_{j \in I} \sup_{k \in I} \sup_{i \in I} \sup_{j \in I} \sup_{k \in I} \sup_{i \in I} \sup_{j \in I} \sup_{k \in I} \sup_{i \in I} \sup_{j \in I} \sup_{k \in I} \sup_{i \in I} \sup_{j \in I} \sup_{k \in I} \sup_{i \in I} \sup_{j \in I} \sup_{k \in I} \sup_{i \in I} \sup_{j \in I} \sup_{k \in I} \sup_{i \in I} \sup_{j \in I} \sup_{i \in I} \sup_{i \in I} \sup_{j \in I} \sup_{i \in I} \sup_{$
- \clubsuit I/O's: number of blocks taken by the bit-sliced index
- Conceptually a bit-sliced index contains the same information as a projection index
 - But the bit-sliced index does not keep TID
 - Bitmap AND is faster

Summary of SUM

- * Best: bit-sliced index
 - Index is small
 - B_f can be applied fast!
- * Good: projection index
- * Not bad: value-list index
 - Full-fledged index carries a bigger overhead
 - The fact that we have counts of values helped
 - But we did not really need values to be ordered

MEDIAN

SELECT MEDIAN(dollar_sales) FROM Sales WHERE condition;

- Same deal: already found B_f (a bitmap or a sorted list of TID's that point to *Sales* tuples that satisfy *condition*)
- Need to find the *dollar_sales* value that is greater than or equal to $\frac{1}{2} \times \text{count-1-bits}(B_f)$ *dollar_sales* values among B_f tuples

MEDIAN with an ordered value-list index

- Idea: take advantage of the fact that the index is ordered by *dollar sales*
- Scan the index in order, count the number of tuples that appeared in B_f until the count reaches $\frac{1}{2} \times \text{count-1-bits}(B_f)$
- ✤ I/O's: roughly half of the index

MEDIAN with a projection index

* In general, need to sort the index by dollar sales

- Well, when you sort, you more or less get back an ordered value-list index!
- * Not useful unless B_f is small

MEDIAN with a bit-sliced index * median = 0; $B_{current} = B_{f};$ // which tuples we are considering sofar = 0;// number of tuples whose values are less // than what we are considering for i = k - 1 to 0: if (sofar + count-1-bits($B_{current}$ AND NOT(B_i)) $\leq \frac{1}{2} \times \text{count-1-bits}(B_f)$: $B_{current} = B_{current} \text{ AND } B_i;$ sofar $+ = \text{count-1-bits}(B_{current} \text{ AND NOT}(B_i);$ median $+ = 2^i$; else: $B_{current} = B_{current} \text{ AND NOT}(B_i);$ ✤ I/O's: still need to scan the entire index

More variant indexes

"Improved Query Performance with Variant Indexes," by O'Neil and Quass. *SIGMOD*, 1997

30

- MIN/MAX, and range query using bit-sliced index
- Join indexes for star schema
 - Traditional: one for each combination of foreign columns
 - Bitmap: one for each foreign column
- Precomputed query results (materialized views)?

Variant vs. traditional indexes

✤ What is the more glaring problem of these variant indexes that makes them not as widely applicable as the B⁺-tree?

31

* How did the paper get away with that?