
1

Query Processing with Indexes

CPS 216

Advanced Database Systems

2

Announcements (February 24)

More reading assignment for next week
Buffer management (due next Wednesday)

Homework #2 due next Thursday
Course project proposal due in 1½ weeks
Midterm in two weeks

Christos Faloutsos (CMU) talk
“Data Mining Using Fractals and Power Laws”
4-5pm, Monday, February 28
130A North Building (telecast from UNC)

3

Review

Many different ways of processing the same query
Scan (e.g., nested-loop join)

Sort (e.g., sort-merge join)

Hash (e.g., hash join)

Index

2

4

Selection using index

Equality predicate: σA = v (R)
Use an ISAM, B+-tree, or hash index on R(A)

Range predicate: σA > v (R)
Use an ordered index (e.g., ISAM or B+-tree) on R(A)

Hash index is not applicable

Indexes other than those on R(A) may be useful
Example: B+-tree index on R(A, B)

How about B+-tree index on R(B, A)?

5

Index versus table scan

Situations where index clearly wins:

Index-only queries which do not require retrieving
actual tuples

Example: πA (σA > v (R))

Primary index clustered according to search key
One lookup leads to all result tuples in their entirety

6

Index versus table scan (cont’d)

BUT(!):

Consider σA > v (R) and a secondary, non-clustered
index on R(A)

Need to follow pointers to get the actual result tuples

Say that 20% of R satisfies A > v
• Could happen even for equality predicates

I/O’s for index-based selection: lookup + 20% |R|

I/O’s for scan-based selection: B(R)

Table scan wins if a block contains more than 5 tuples

3

7

Index nested-loop join

R R.A = S.B S
Idea: use the value of R.A to probe the index on S(B)
For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s with s.B = r.A
Output rs

I/O’s: B(R) + |R| · (index lookup)
Typically, the cost of an index lookup is 2-4 I/O’s
Beats other join methods if |R| is not too big
Better pick R to be the smaller relation

Memory requirement: 2

8

Tricks for index nested-loop join

Goal: reduce |R| · (index lookup)

For tree-based indexes, keep the upper part of the
tree in memory

For extensible hash index, keep the directory in
memory

Sort or partition R according to the join attribute
Improves locality: subsequent lookup may follow the
same path or go to the same bucket

9

Zig-zag join using ordered indexes

R R.A = S.B S
Idea: use the ordering provided by the indexes on R(A) and
S(B) to eliminate the sorting step of sort-merge join

Trick: use the larger key to probe the other index
Possibly skipping many keys that do not match

B+-tree on R(A)

B+-tree on S(B)

1 2 3 4 7 9 18

1 7 9 11 12 17 19

4

10

More indexes ahead!

Bitmap index
Generalized value-list index

Projection index

Bit-sliced index

11

Search key values × tuples

Looks familiar?
Keywords × documents

1 1 0 … 0
0 0 0 … 0
0 0 1 … 1
0 0 0 … 0
0 0 0 … 0
… … … … …

Tuples

8

10
9

26
108

Search key values

1 means tuple has the particular search key value
0 means otherwise

0 1 2 n – 1

12

Bitmap index

Value-list index—stores the matrix by rows
Traditionally list contains pointers to tuples

B+-tree: tuples with same search key values

Inverted list: documents with same keywords

If there are not many search key values, and there
are lots of 1’s in each row, pointer list is not space-
efficient

How about a bitmap?

Still a B+-tree, except leaves have a different format

5

13

Technicalities

How do we go from a bitmap index (0 to n – 1) to
the actual tuple?

One more level of indirection solves everything

Or, given a bitmap index, directly calculate the
physical block number and the slot number within
the block for the tuple

In either case, certain block/slot may be invalid
Because of deletion, or variable-length tuples

Keep an existence bitmap: bit set to 1 if tuple exists

14

Bitmap versus traditional value-list

Operations on bitmaps are faster than pointer lists
Bitmap AND: bit-wise AND

Value-list AND: sort-merge join

Bitmap is more efficient when the matrix is
sufficiently dense; otherwise, pointer list is more
efficient

Smaller means more in memory and fewer I/O’s

Generalized value-list index: with both bitmap and
pointer list as alternatives

15

TID A B …
0 8 … …
1 8 … …
2 26 … …
3 108 … …
… … … …

n -1 10 … …

Projection index

Just store πA (R) and use it as an index!

Could be implicit
and not explicitly stored

TID A B …
0 8 … …
1 8 … …
2 26 … …
3 108 … …
… … … …

n -1 10 … …

Projection index

6

16

Why projection index?

Idea: still a table scan, but we are scanning a much
smaller table (project index)

Savings could be substantial for long tuples with lots of
attributes

Looks familiar?

17

Bit-sliced index

If a column stores binary numbers, then slice their
bits vertically

Basically a projection index by slices

Projection index

TID A
0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0
2 0 0 0 1 1 0 1 0
3 0 1 1 0 1 1 0 0
… …

n -1 0 0 0 0 1 0 1 0

Bit-sliced index

Slice 0Slice 7 …

18

Aggregate query processing example

SELECT SUM(dollar_sales)
FROM Sales
WHERE condition;
Already found Bf (a bitmap or a sorted list of TID’s
that point to Sales tuples that satisfy condition)

Probably used a secondary index

Need to compute SUM(dollar_sales) for tuples in Bf

7

19

SUM without any index

For each tuple in Bf, go fetch the actual tuple, and
add dollar_sales to a running sum

I/O’s: number of Sales blocks with Bf tuples
Assuming we fetch them in sorted order

20

SUM with a value-list index
Assume a value-list index on Sales(dollar_sales)
Idea: the index stores dollar_sales values and their counts (in
a pretty compact form)

sum = 0;
Scan Sales(dollar_sales) index; for each indexed value v with
value-list Bv:

sum += v × count-1-bits(Bv AND Bf);

I/Os: number of blocks taken by the value-list index
Bitmaps can possibly speed up AND and reduce the size of
the index

21

SUM with a projection index

Assume a project index on Sales(dollar_sales)
Idea: merge join Bf and the projection index, add
joining tuples’ dollar_sales to a running sum

Assuming both Bf and the index are sorted on TID

I/O’s: number of blocks taken by the projection
index

Compared with a value-list index, the projection index
may be more compact (no empty space or pointers), but
it does store duplicate dollar_sales values

Also: simpler algorithm, fewer CPU operations

8

22

SUM with a bit-sliced index
Assume a bit-sliced index on Sales(dollar_sales), with slices
Bk – 1, …, B1, B0

sum = 0;
for i = 0 to k – 1:

sum += 2i × count-1-bits(Bi AND Bf);

I/O’s: number of blocks taken by the bit-sliced index
Conceptually a bit-sliced index contains the same
information as a projection index

But the bit-sliced index does not keep TID
Bitmap AND is faster

23

Summary of SUM

Best: bit-sliced index
Index is small

Bf can be applied fast!

Good: projection index

Not bad: value-list index
Full-fledged index carries a bigger overhead

• The fact that we have counts of values helped

• But we did not really need values to be ordered

24

MEDIAN

SELECT MEDIAN(dollar_sales)
FROM Sales
WHERE condition;
Same deal: already found Bf (a bitmap or a sorted
list of TID’s that point to Sales tuples that satisfy
condition)

Need to find the dollar_sales value that is greater
than or equal to ½ × count-1-bits(Bf) dollar_sales
values among Bf tuples

9

25

MEDIAN with an ordered value-list index

Idea: take advantage of the fact that the index is
ordered by dollar_sales

Scan the index in order, count the number of tuples
that appeared in Bf until the count reaches ½ ×
count-1-bits(Bf)

I/O’s: roughly half of the index

26

MEDIAN with a projection index

In general, need to sort the index by dollar_sales
Well, when you sort, you more or less get back an
ordered value-list index!

Not useful unless Bf is small

27

MEDIAN with a bit-sliced index

Tough at the first glance—index is not sorted

Think of it as sorted
We won’t actually make use of the this fact

0 0 0…
0 0 1…
1 0 0…
1 1 0…
1 1 1…

More than half are 0’s?
Look at Bk – 1 first

Yes; continue searching
for median here

No; continue searching
for median here

By looking at Bk – 1 we know the (k – 1)-th bit of the median

10

28

MEDIAN with a bit-sliced index

median = 0;
Bcurrent = Bf; // which tuples we are considering
sofar = 0; // number of tuples whose values are less

// than what we are considering
for i = k – 1 to 0:

if (sofar + count-1-bits(Bcurrent AND NOT(Bi))
· ½ × count-1-bits(Bf)):

Bcurrent = Bcurrent AND Bi;
sofar += count-1-bits(Bcurrent AND NOT(Bi);
median += 2i;

else:
Bcurrent = Bcurrent AND NOT(Bi);

I/O’s: still need to scan the entire index

29

Summary of MEDIAN

Best: ordered value-list index
It helps to be ordered!

Pretty good: bit-sliced index
Could beat ordered value-list index if Bf is “clustered”

• Only need to retrieve the corresponding segment

30

More variant indexes

“Improved Query Performance with Variant Indexes,”
by O’Neil and Quass. SIGMOD, 1997

MIN/MAX, and range query using bit-sliced index

Join indexes for star schema
Traditional: one for each combination of foreign columns

Bitmap: one for each foreign column

Precomputed query results (materialized views)?

11

31

Variant vs. traditional indexes

What is the more glaring problem of these variant
indexes that makes them not as widely applicable as
the B+-tree?

How did the paper get away with that?

