XML-Relational Mapping

CPS 216

Advanced Database Systems

Announcements (March 29)

<+ Homework #3 assigned today
® Due in two weeks (April 12)

< Reading assignment due this Wednesday
= Two VLDB papers on native XML databases

< Course project milestone 2 due this Thursday

Approaches to XML processing

% Text files (!)
+ Specialized XML DBMS

= Lore (Stanford), Strudel (AT&T), Tamino/QuiP
(Software AG), X-Hive, Timber (Michigan), etc.

= Still a long way to go
% Object-oriented DBMS
= eXcelon (ObjectStore), ozone, etc.
= Not as mature as relational DBMS
< Relational (and object-relational) DBMS

= Middleware and/or object-relational extensions

Mapping XML to relational

% Store XML in a CLOB (Character Large OBject) column
= Simple, compact
= Full-text indexing can help (often provided by DBMS vendors as
object-relational “extensions”)
= Poor integration with relational query processing
= Updates are expensive
% Alternatives?
= Schema-oblivious mapping:
well-formed XML — generic relational schema
* Node/edge-based mapping for graphs
* Interval-based mapping for trees
* Path-based mapping for trees

= Schema-aware mapping:
valid XML — special relational schema based on DTD

Node/edge-based: schema

% Element(eid, tag)
% Attribute(eid, attrName, attrValue) Key: (eid, attrName)

= Attribute order does not matter
% ElementChild(eid, pos, child)

= pos specifies the ordering of children

Keys: (eid, pos), (child)

= child references either Element(eid) or Text(tid)
% Text(tid, value)

® tid cannot be the same as any eid
= Need to “invent” lots of id’s

= Need indexes for efficiency, e.g., Element(tag), Text(value)

Node/edge-based: example

Element ElementChild
<bibliography> 7 7 7
<book ISBN="TSBN-10" price="80.00"> eid |tag il || |l
<title>Foundations of Databases</title> |€0 [bibliography| [e0 |1 el
<author>Abi teboul</author>
<authorsHulT</author> 14| book gl B |cH
<author>Vianu</author> e2 |title el |2 e3
<publisher>Addison Wesley</publisher> [o3~ [autror el |3 les
<year>1995</year>
</book>... e4 |author el |4 e5
</bibliography> e5 |author el |5 eb
g - e6 |publisher el |6 e7
Attributeleid |attriame attrvalue o7 |year e |1 |t
el |1seN ISBN-10 = =
el |price 80 ed |1 t2
Text[tid [value es |1 |t3
t0_|Foundations of Databases e6 |1 |t
t1 |Abiteboul 7M1 5
t2 |Hull
t3 |Vianu

t4 |Addison Wesley
t5 |1995

Node/edge-based: simple paths

< //title
= SELECT eid FROM Element WHERE tag = 'title';

« //section/title
= SELECT e2.eid

FROM Element el, ElementChild c, Element e2

WHERE el.tag = 'section'

AND e2.tag = 'title'

AND el.eid = c.eid

AND c.child = e2.eid;

@ Path expression becomes joins!

= Number of joins is proportional to the length of the path
expression

Node/edge-based: more complex paths

% //bibliography/book[author="Abiteboul"]/@price
= SELECT a.attrValue
FROM Element el, ElementChild cl,
Element e2, Attribute a
WHERE el.tag = 'bibliography'
AND el.eid = cl.eid AND cl.child = e2.eid
AND e2.tag = 'book'
AND EXISTS (SELECT * FROM ElementChild c2,
Element e3, ElementChild c3, Text t
WHERE e2.eid = c2.eid AND c2.child = e3.eid
AND e3.tag = 'author'
AND e2.eid = c3.eid AND c3.child = t.tid
AND t.value = 'Abiteboul")
AND e2.eid = a.eid
AND a.attrName = 'price';

Node/edge-based: descendent-or-self

< //book//title
® Requires SQL3 recursion
= WITH ReachableFromBook(id) AS
((SELECT eid FROM Element WHERE tag = 'book')
UNION ALL
(SELECT c.child
FROM ReachableFromBook r, ElementChild c
WHERE r.eid = c.eid))
SELECT eid
FROM Element
WHERE eid IN (SELECT * FROM ReachableFromBook)
AND tag = 'title';

10

Interval-based: schema

% Element(left, right, level, tag)
= Jeft is the start position of the element
= right is the end position of the element
= Jevel is the nesting depth of the element (strictly speaking, unnecessary)
= Key is left
< Attribute(left, attrName, attrValue)
% Text(left, level, value)
@ Where did ElementChild go?
= E1 is the parent of E2 iff:

[E1.left, E1.right} D {E2.left, E2.right], and
El.Jevel = E2.level — 1

Interval-based: example

1<bibliography>
2<book ISBN="ISBN-10" price="80.00">
3<title>4Foundations of Databases</title>5
6<author>7Abiteboul</author>8
9<author>10Hul1</author>11
12<author>13Vianu</author>14
15<publisher>16Addison Wesley</publisher>17
18<year>191995</year>20
</book>21...
</bibli >
/bibliography>999 m‘bliogN
book 2,21,2

title author author author publisher year
3,5,3 6,83 9,11,3 12,14,3 15,17,3 18,20,3

Interval-based: queries

% //section/title
= SELECT e2.left
FROM Element el, Element e2
WHERE el.tag = 'section' AND e2.tag = 'title'
AND el.left < e2.1eft AND e2.right < el.right
AND el.level = e2.level-1;

& Path expression becomes “containment” joins!
* Number of joins is proportional to path expression length
« //book//title
= SELECT e2.Teft
FROM Element el, Element e2

WHERE el.tag = 'book' AND e2.tag = 'section'
AND el.left < e2.1eft AND e2.right < el.right;

% No recursion!

Summary of interval-based mapping

+ Path expression steps become containment joins

< No recursion needed for descendent-or-self

< Comprehensive XQuery-SQL translation is possible
with “dynamic interval encoding”
® DeHaan et al. SIGMOD 2003

= Looks hairy, but with some special tweaks to the
relational engine, it actually performs better than many
of the currently available native XQuery products!

& Set-oriented processing helps!

A path-based mapping

Label-path encoding
% Element(pathid, left, right, value), Path(pathid, path)
= path is a label path starting from the root

= Why are /eft and right still needed? To preserve structure

Element Path
pathid |left |right|.. pathid [path
1 1 999 |.. 1 /bibliography
2 21 2 /bibliography/book
3 3 5 3 bibliography/book/title
4 6 8 4 bibliography/book/author
4 9 11 .
4 12 14

Label-path encoding: queries

< Simple path expressions with no conditions
//book//title
® Perform string matching on Path
= Join qualified pathid’'s with Element
< Path expression with attached conditions needs to be
broken down, processed separately, and joined back
//book[publisher='Prentice Hall']/title
®* Evaluate //book/title
®* Evaluate //book/publisher[text()="'Prentice Hall']
= Join to ensure tit1le and pubTisher belong to the same book

* How?

Another path-based mapping

Dewey-order encoding

< Each component of the id represents the order of the
child within its parent

= Unlike label-path, this encoding is “lossless”

o
title author author author publisher year
1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6

Dewey-order encoding: queries

< Examples:
//title
//section/title
//book//title
//book[publisher='Prentice Hall']/title
= Works similarly as interval-based mapping

® Except parent/child and ancestor/descendant relationship are
checked by prefix matching

= Serves a different purpose from label-path encoding

= Any advantage over interval-based mapping?

Schema-aware mapping

% Idea: use DTD to design a better schema

< Basic approach: elements of the same type go into one table
® Tag name — table name
= Attributes — columns
* If one exists, ID attribute — key column; otherwise, need to “invent” a key
¢ IDREF attribute — foreign key column
= Children of the element — foreign key columns

* Ordering of columns encodes ordering of children

<IDOCTYPE bibliography [..

<IELEMENT book (title, .)> book(ISBN, price, title_id, ...)
<IATTLIST book ISBN 1D #REQUIRED>

<IATTLIST book price CDATA #IMPLIED> title(id, PCDATA_id)

q <IELEMENT title (#PCDATA)>.. PCDATA(d, value)

Handling * and + in DTD

< What if an element can have any number of children?

< Example: Book can have multiple authors
= book(ISBN, price, title_id, author_id, publisher_id, year_id)?
“ BCNF?
% Idea: create another table to track such relationships
= book(ISBN, price, title_id, publisher id, year_id)
= book_author(ISBN, author_id)
#BCNF decomposition in action!
A further optimization: merge book_author into author
% Need to add position information if ordering is important
= book_anthor(ISBN, author_pos, aunthor_id)

Inlining

% An author element just has a PCDATA child

% Instead of using foreign keys
= book_author(ISBN, author_id)
= author(id, PCDATA_id)
" PCDATAC(id, value)
< Why not just “inline” the string value inside book?
= book_author(ISBN, author PCDATA _value)
= PCDATA table no longer stores author values

More general inlining

< As long as we know the structure of an element and its
number of children (and recursively for all children), we can
inline this element where it appears

<book ISBN="..">..
<publisher>
<name>..</name><address>..</address>
</publisher>..
</book>

< With no inlining at all < With inlining
book(ISBN, publisher_id) book(ISBN,
publisher(id, name_id, address_id) publisher_name_PCDATA _value,
name(id, PCDATA _id) publisher_addyress PCDATA _value)
addyess(id, PCDATA_id)

22

Queries

< book(ISBN, price, title, publisher, year),
book_author(ISBN, author), book_section(ISBN, section_id),
section(id, title, text), section_section(id, section_pos, section_id)
<« [/title
= (SELECT title FROM book) UNION ALL
(SELECT title FROM section);

» //section/title These queries only work
* SELECT title FROM section; for the given DTD
+ //bibliography/book[author="Abiteboul"]/@price
= SELECT price FROM book, book_author
WHERE book.ISBN = book_author.ISBN AND author = 'Abiteboul’;
% //book//title
= (SELECT title FROM book) UNION ALL
(SELECT title FROM section)

Pros and cons of inlining

< Not always applicable
= * and +, recursive schema (e.g., section)
< Fewer joins
< More “scattering” (e.g., there is no longer any table

containing all titles; author information is scattered
across book, section, etc.)

@ Heuristic: do not inline elements that can be shared

Result restructuring

< Simple results are fine
= Each tuple returned by SQL gets converted to an element
< Simple grouping is fine (e.g., books with multiple authors)
= Tuples can be returned by SQL in sorted order; adjacent tuples are
grouped into an element
< Complex results are problematic: one SQL query only
returns a single table; columns cannot contains sets or
structures
= E.g., books with multiple authors and multiple references

¢ Option 1: one table with all combo of authors/references — bad

* Option 2: two tables, one w/ authors and the other w/ references — join is
done as post processing
* Option 3: sorted “union” of NULL-padded authors and references

Comparison of approaches

% Schema-oblivious
= Flexible and adaptable; no DTD needed
= Queries are easy to formulate
* Translation from Xpath/XQuery can be easily automated
® Queries involve lots of join and are expensive
< Schema-aware
= Less flexible and adaptable
= Need to know DTD to design the relational schema
® Query formulation requires knowing DTD and schema
= Queries are more efficient

= XQuery is tougher to formulate because of result restructuring

