
1

XML Query Processing

CPS 216

Advanced Database Systems

2

Announcements (March 31)

Course project milestone 2 due today
Hardcopy in class or otherwise email please

I will be out of town next week
No class on Tuesday (April 5); will make up during 
reading period

Badrish Chandramouli will give the lecture 
on Thursday (April 7)

Homework #3 in less than two weeks (April 12)

Reading assignment for next week will be assigned 
through email

3

Overview

Recall that XML queries based on path expressions 
can be expressed by joins

Node/edge-based representation (graphs)
Equi-join on id’s
Chasing pointers ≈ index nested-loop joins

“Navigational” approach

Interval-based representation (trees)
“Containment” joins involving left and right

Sort-merge joins, zig-zag joins with indexes
“Structural” approach



2

4

Navigational processing in Lore
VLDB 1999

Lore data model peculiarity: labels on edges instead of labels 
on nodes
Access paths in Lore

Base representation: (parent, label) → child
Label index: (child, label) → parent
Edge index: label → (parent, child)
Value index: (value, label) → node
Path index: path expression → node

Correspond to the following in a label-on-node model
label/value → node
(parent, label) → child
child → parent

5

Navigational plans in Lore
//A/B/C[.=5]

Top down: pointer chasing
Start with //A, navigate down to //A/B and then to //A/B/C, 
and then check values of C

Bottom up: reverse pointer chasing
Start with //C[.=5], navigate up to //B[/C[.=5]] and then to 
//A[/B/C[.=5]]

Hybrid: top down and bottom up, meet in middle
Start with //A, navigate down to //A/B
Start with //C[.=5], navigate up to //B[/C[.=5]]
Intersect B nodes
In general, hybrid can combine multiple top-down and bottom-up 
plans starting from anywhere in the path expression

6

Comparison of Lore navigational plans

Which plan is best depends on the size of the intermediate 
results it generates

Choose the optimal join order!

Top down and bottom up are essentially index nested-loop 
joins (“pure” navigation)
Hybrid can use any join strategy to combine subplans



3

7

Niagara unnest
VLDB 2003

Unnest: navigation-style processing using finite state 
machines
Example: A/B

Given a list of elements for which A/B needs to be evaluated
Each state maintains a cursor
For each given element, state 1 uses a CA (child-axis) cursor with 
label A to iterate through all A children
For each A child, state 2 uses a CA cursor with label B to iterate 
through all B children of the A child

Essentially a sequence of indexed nested-loop joins
Top down or bottom up, but not hybrid

8

Alternative unnest strategies for //

Example: A//B

Using CA cursors only

Using DA (descendent-axis) cursor
Given node n and label A, a DA cursor iterates through 
all n//A nodes in document order

9

Surprise with the DA cursor

Recall that XPath expressions are supposed to 
return result nodes in document order

Example: /A//B/C
DA enumerates descendents in document order

But subsequent steps may produce out-of-order results

Duplicates are also an issue 
(e.g., query //A//B//C on 
data /A/B/B/C/C)

A

B

B C

C



4

10

Structural approach

Binary containment joins (Al-Khalifa et al., ICDE 2002)
Given Alist and Dlist, two lists of elements encoded with (left, 
right), with each list sorted by left
Find all pairs of (a, e), where a ∈ Alist and e ∈ Dlist, such that a is 
a parent (or ancestor) of e

Example query processing scenario: //book/author
Using an inverted-list index, retrieve the list of book elements 
sorted by left, and the list of author elements sorted by left

Find pairs that actually form parent-child relationships

11

Tree-based algorithms

Algorithm Tree-Merge-Anc
BeginJoinable = 0;
For each a in Alist:

Start from BeginJoinable and skip Dlist until the 
first element with left > a.left; update BeginJoinable;

Start from BeginJoinable and join each d from 
Dlist with a; stop at the first d with left > a.right;

An alternative algorithm, Tree-Merge-Desc, uses Dlist
as the outer table instead of Alist, and requires 
minor tweaks to conditions

12

Tree-Merge-Anc example

a1: BeginJoinable = d1; stops at d4

a2: BeginJoinable = d2; stops at d4

a3: BeginJoinable = d4; stops at d6

a4: BeginJoinable = d6

Further optimization is possible to avoid unnecessary 
rescanning; though in general rescanning cannot be avoided

a1

a2

a3 a4

d1 d2

d3

d4 d5 d6



5

13

Worst case of Tree-Merge-Anc

Optimal (up to a 
constant factor) for //
Not optimal for /

14

Worst case of Tree-Merge-Desc

Not even optimal 
for //
Problem: linear 
access to Alist forces 
unnecessary 
scanning
Idea: create another 
representation that 
corresponds more 
closely to a tree 
traversal

15

Stack-based algorithms 
Algorithm Stack-Tree-Desc
Start with an empty stack Astack
While Astack or Alist or Dlist is not empty:

If heads of both Alist and Dlist come after the top of 
Astack, pop Astack;

Else if the head of Alist is contained by the top of 
Astack, push it onto Astack and advance Alist;

Else join the head of Dlist with everything on Astack
and advance Dlist;

Output is ordered by Dlist
An alternative algorithm, Stack-Tree-Anc, orders output by 
Alist but requires more bookkeeping



6

16

Stack-Tree-Desc example

Copying from Alist to Astack avoids the worst case of 
Tree-Merge-Anc

17

Twigs

“Twigs” represent longer and possibly branching 
XPath expressions

Problem: find all instances of a given twig in a document
• More what XPath requires

//book[title=“XML” and year=“2000”]
//book[title=“XML” and //author[fn=“jane” and ln=“doe”]]

Double edges represent //

18

Holistic twig join

Traditional approach: use a sequence of binary 
containment joins to process a twig

Problem: intermediate results can get much larger 
than input and output sizes

Example?

Idea: use a multi-way merge (since all joins are on 
the same attributes)

“Holistic” twig join (Bruno et al., SIGMOD 2002)



7

19

Compact encoding using stacks

One stack for each node in the query twig
Elements in a stack form a containment chain

Each stack element points to one in the parent stack
Specifically, the top one that contains it

20

PathStack
Handles twigs with no branches q1//q2//…//qn
Input lists Tq1, Tq2, …, Tqn and stacks Sq1, Sq2, …, Sqn
While Tqn is not empty:

Let Tqmin be the list whose head has smallest left;
Clean all stacks: pop while top’s right < head(Tqmin).left;
Push head(Tqmin) on Sqmin, with pointer to top(Sparent(qmin));
If qmin is the leaf (qn), output results and pop Sqmin;

Check properties
Elements in a stack form a containment chain
Each stack element points to the top one in the parent stack that 
contains it

21

Extending PathStack to TwigStack
A first cut

Decompose a twig into root-to-leaf paths

Process each path using PathStack

Merge solutions for all paths

Problem: intermediate results may be big

All authors will be returned
by PathStack, though
only the last one should be
in the final result



8

22

TwigStack

Generate solutions for each root-to-leaf path
Do not use PathStack, which generates all solutions

Modify PathStack to generate only solutions that are 
parts of the final result (possible if twig contains only //)

Specifically, when pushing hq onto stack Sq, ensure that
• hq has a descendent hq’ in the each input list Tq’ where q’ is a 

child of q

• Each hq’ recursively satisfies the above property

Merge solutions for all paths

23

TwigStack still suboptimal for /
Example

Desired result: (A1, B2, C2), (A2, B1, C1)

Initial state: all three stacks empty; ready to push one of A1, 
B1, C1 onto a stack

If we want to ensure that non-contributing nodes are never 
pushed onto the stack, then

Cannot decide on A1 unless we see B2 and C2

Cannot decide on B1 or C1 unless we see A2

A1

A2

B1 C1

B2 C2

A

B C

24

Optimization using an index

Idea: if there are indexes on input lists ordered by left, use 
these indexes to skip lists more efficiently

Example: Niagara’s ZigZag join on A//B

After advancing to the second A, use the index on B list to go 
directly to the first joining B, instead of scanning B list linearly

When processing a B, use the index on A list to skip



9

25

Summary of structural approach

What makes XML containment joins easier than joining 
lists of arbitrary intervals?

Intervals form either disjoint or containment relationships, but
they cannot overlap

This property is heavily exploited by stack-based algorithms

Most algorithms in literature assume that bindings must be 
produced for all nodes in a twig

Unnecessary requirement in practice

Leads to potentially much larger result sizes

Is it possible to have more efficient algorithms that produce 
bindings for only selected nodes in a twig?

26

Navigational vs. structural approaches

In the past some has argued that structural is 
preferable to navigational

Niagara argues for a mixed-mode approach, using a 
cost-based analysis to pick which approach or 
combination of approaches is better

Just like one would implement both index nested-loop 
join and sort-merge join


