XML Indexing II

CPS 216

Advanced Database Systems

Announcements (April 14)

<+ Homework #3 will be graded by next Tuesday
% Reading assignment due next Monday

= Selinger paper on query optimization

XML indexing overview (review)

% It is a jungle out there
= Different representation scheme lead to different indexes

= Will we ever find the “One Tree” that rules them all?
% Building blocks: B -trees, inverted lists, tries, etc.
< Indexes for node/edge-based representations (graph)
% Indexes for interval-based representations (tree)
@ Indexes for path-based representations (tree)
= Indexes for sequence-based representations (tree)

@ Structural indexes (graph)

ViST: a sequence-based index

Wang et al. “ViST: A Dynamic Index Method for Querying XML Data
by Tree Structures.” SIGMOD 2003

% Use a sequence-based encoding for XML

< Turn twig queries to subsequence matches

< Index sequences in a virtual trie using interval-based
encoding

Sequence representation of XML

wEzbaan

partsl ibm (1) parte2 s
% A sequence of (symbol, prefix) pairs, in depth-first order:
" (P, 9, S, P), (1, PS), (N, PSD), (v, PSIN), (M, PSI), (v,, PSIM), (1,
PSI), (M, PSII), (v, PSIIM), (I, PS), (N, PSI), (v, PSIN), (L, PS),
(vs, PSL), (N, PS), (5, PSN), (B, P), (L, PB), (v,, PBL), (N, PB),
(v4, PBN)
= What is the worst-case storage requirement?

= Would listing symbols in depth-first order be sufficient?

Sequence representation of twigs

< Twigs can be represented sequences as well

Path Expression Structure- Encoded Sequence

s [Sedler (e [Aamu forturer (P.e)(S, P)(T, PS)(M, PST

([Seller|Loe: = vy)| (Buger|Loe = v;] [Pe)(S, P)E, PS){es, PSL)B, P) L, PR){e;, PBL

(B, e)(L, Pe)(es, Pel)

(B e)(M, Pf)[vs. PIM)

Matching twigs as sequences

Purchase
Seller

mEapney
§
5
3

intel B

< Data: (P, &), (S, P), (I, PS), (N, PSI), (v,, PSIN), (M, PSI), (,, PSIM),
(I, PSI), (M, PSII), (v;, PSIIM), (I, PS), (N, PSI), (v, PSIN), (L, PS),
(vs, PSL), (N, PS), (v, PSN), (B, P), (L, PB), (v, PBL), (N, PB), (v3,
PBN)

< Query (Boston seller New York buyer): (P, ¢), (S, P), (L, PS), (us,
PSL), (B, P), (L, PB), (v, PBL)

< Find a (non-contiguous) subsequence of data that matches the query

False alarms

P " P
N /N |
“K 0 Q Q
JANVAN | | /N
T 5 U T = 1 S
Docl Doc2 Query
D (P &b (0, PR, PORS, PO R, PHU.PR) T, PR)
D, (P, ed QL PUT, POQRO, PIIS, POY
Q (P.ed QL PY(T, POQI(S, PO

< [P/QITY/S
= Match sequences for /P/Q[TY/S and /PAQ/THQ/S
= Compute the difference between the answers

= But what if a document exhibits both structures?

Indexing sequences with a trie

+ Just insert sequences into a trie
« Search the trie for subsequences matching the query

e

= Expensive because
subsequences do not need op

to be contiguous i
Doy (P.e)(SP)N.PS)ey, PSNILPS)e, PSL
Docy : (Pe)(B.P)L,PB)(es. PBL vt,psr/I

Lo
th : (F.)B.P)L PB)irs. FBL
Q¢ (Pl Pz oL v

b

£ of DocTds of AL Docunents
e iasections end vp 2t this nede

Lis
v

10

“Virtual trie” idea

< Use (left, size) to encode trie nodes

= size = right — left

= Supports efficient “skipping”

% Index in a regular B*-tree

nEE

% No need to store the trie itself

ViST structures

% D-Ancestor BT -tree indexes trie nodes by (symbol, prefix)
® Facilitates prefix matching (checking for ancestor-descendent
relationships in documents)
% Leaf nodes point to S-Ancestor B -trees, which further
index nodes by (/eft, size)
® Facilitates skipping in the trie
(checking for ancestor-descendent
relationships in the trie)
% Subsequence matching —
repeated index lookups

O Arcestor BeTiee S-Anceizsc BaTores

Lore’s DataGuide: a structural index

Goldman & Widom. “DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases.” VLDB, 1997
< Given an XML data graph G, a DataGuide is an index
graph I with the following properties
= Every label path in G also occurs in I
* Complete coverage
= Every label path in I also occurs in G
® Accurate coverage
= Every label path in I (starting from a particular object) is unique
(i.e., I is a DFA)

* Efficient search: a label path of length # traverses » edges
and ends at one node

= Each index node in [points to its extent: a set of data nodes in G
* Label path query on G — label path query on I

Strong DataGuide

< Let p, p’ be two label path expressions and G a graph; define
P =gy i p(G) = p(G)
= That is, p and p’ are indistinguishable on G
% I is a strong DataGuide for a database G if the equivalence
relations =, and =, are the same

< Example

= [, is strong; I, is not PN
s ACG) ={5}hBC®={67} ¥ Y ¥
* Not equal N s
= ACI)={20}BCUI)={20} 7 : ”’
* Equal & -

NFA-based structural indexes

< Defined using an equivalence relation (based on the graph
structure)
= Each index node v corresponds to an equivalence class of data

nodes in G (denoted v.extent)
= There is a edge from # to v in I iff there exists a edge from a node

in z.extent to a node in v.extent
@ |I| < |G| by definition because extents do not overlap;
however, the structure is no longer a DFA

1-index construction

name™—{4} na

Data graph Initialize Split using movie{2}
% Initialize the index
= Data nodes with the same label go into the same index node

< Pick an index node # to apply a split operation

= For each index node v, split it into , and v,

(if both have non-empty extents)
* v, .extent contains data nodes in v.exzent that are children of «.extent

* v,.extent contains the rest of v.extent

< Repeat sp/it until there is no more change to the index

Split using director(3)

{7.9}

Size of DataGuides

% If G is a tree, then |I| < |G|
® Linear construction time
% In the worst case, the size of a strong DataGuide may be

exponential in |G| because of the DFA requirement
ol

@ Relax the DFA requirement?

1-index

Milo & Suciu, “Index Structures for Path Expressions.” ICDT, 1997
% “Perfect” equivalence relation: two data nodes are
equivalent iff they are not distinguishable by label path
expressions
® That is, the sets of label path expressions that can reach them are
the same
= Too expensive to compute in practice
% 1-index uses a less perfect equivalent relation, bisimilarity,
which is easier to compute
= If two nodes are bisimilar, then they are not distinguishable by
label path expressions
= The converse is not necessary true

® May result in larger indexes

