
1

Query Optimization
Part I

CPS 216

Advanced Database Systems

2

A query’s trip through the DBMS

Parser

Validator

Query optimizer

Query execution engine

Result

SQL query SELECT title, SID
FROM Enroll, Course
WHERE Enroll.CID =

Course.CID;
Parse tree

hSFWi
hselect-listi

hfrom-listi
hwhere-listi

htablei htablei

hQueryi

AND

Enroll Course
…

…

Logical plan
πtitle, SID
σEnroll.CID = Course.CID
×

Enroll Course
Physical plan

PROJECT (title, SID)

MERGE-JOIN (CID)

SCAN (Enroll)
SCAN (Course)

SORT (CID)

3

Parsing & validation

Parser: SQL → parse tree
Good old lex & yacc
Detect and reject syntax errors

Validator: parse tree → logical plan
Detect and reject semantic errors

• Nonexistent tables/views/columns
• Type mismatches (e.g., AVG(name), name + GPA, Student
UNION Enroll)

Wildcard (SELECT *) and view expansion
Use information stored in system catalog tables (contains 
all metadata/schema information)



2

4

Logical plan

A tree whose nodes are logical operators
Often a tree of relational algebra operators

DB2 uses QGM (Query Graph Model)

There are many equivalent logical plans
πtitle
σStudent.name=“Bart” ∧ Student.SID = Enroll.SID ∧ Enroll.CID = Course.CID
×

Enroll

Course×

Student

An equivalent plan:
πtitle

Enroll.CID = Course.CID

Enroll

Course

Student

Student.SID = Enroll.SID

σname = “Bart”

SELECT Course.title
FROM Student, Enroll, Course
WHERE Student.name = ‘Bart’
AND Student.SID = Enroll.SID
AND Enroll.CID = Course.CID;

5

Query optimization and execution
Recall that a physical plan tells the DBMS query execution 
engine how to execute the query

One logical plan can have many possible physical plans (with 
equivalent results, but different costs and assumptions)

Query optimizer: one logical plan → “best” physical plan
Query execution engine: physical plan → results

PROJECT (title)

INDEX-NESTED-LOOP-JOIN (CID)

Index on Enroll(SID)

Index on Course(CID)

Index on Student(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (SID)

PROJECT (title)

MERGE-JOIN (CID)

SCAN (Course)SORT (CID)

MERGE-JOIN (SID)

SCAN (Enroll)

SORT (SID)

SCAN (Student)

FILTER (name = “Bart”)

6

Query optimization

Conceptually
Consider a space of possible plans (next)

Estimate costs of plans in the search space (next Tuesday)

Search through the space for the “best” plan (next Thursday)

Often the goal is not picking the absolute optimum, but 
instead avoiding the horrible ones

1 second 1 hour1 minute

Any of these will do



3

7

Plan enumeration in relational algebra

Apply relational algebra equivalences

Join reordering: × and are associative and 
commutative (except when column ordering is 
considered, but that is unimportant)

R S

T

S R

T

R T

S

…= = =

8

More relational algebra equivalences
Convert σp-× to/from p: σp(R × S) = R p S
Merge/split σ’s: σp1(σp2 R) = σp1 ∧ p2 R
Merge/split π’s: πL1(πL2 R) = πL1 R, where L1 ⊆ L2
Push down/pull up σ:
σp ∧ pr ∧ ps (R × S) = (σpr R) p (σps S), where

pr is a predicate involving only R columns
ps is a predicate involving only S columns
p is a predicate involving both R and S columns

Push down π: πL (σp R) = πL (σp (πL L’ R)), where
L’ is the set of columns referenced by p that are not in L

Many more (seemingly trivial) equivalences…
Can be systematically used to transform a plan to new ones

9

Relational query rewrite example
πtitle
σStudent.name=“Bart” ∧ Student.SID = Enroll.SID ∧ Enroll.CID = Course.CID
×

Enroll

Course×

Student πtitle
σEnroll.CID = Course.CID
×

Enroll

Course

×

Student

σStudent.SID = Enroll.SID

σStudent.name = “Bart”

Push down σ
πtitle

Enroll.CID = Course.CID

Enroll

Course

Student

Student.SID = Enroll.SID

σname = “Bart”

Convert σp-× to p



4

10

Heuristics-based query optimization

Start with a logical plan

Push selections/projections down as much as possible
Why? 

Why not? 

Join smaller relations first, and avoid cross product
Why? 

Why not? 

Convert the transformed logical plan to a physical 
plan (by choosing appropriate physical operators)

11

SQL query rewrite

More complicated—subqueries and views divide a 
query into nested “blocks”

Processing each block separately forces particular join 
methods and join order

Even if the plan is optimal for each block, it may not be 
optimal for the entire query

Unnest query: convert subqueries/views to joins

Then we just deal with select-project-join queries
Where the clean rules of relational algebra apply

12

DB2’s QGM
Leung et al. “Query Rewrite Optimization Rules in IBM DB2 Universal 

Database.”

Query Graph Model: DB2’s logical plan language
More high-level than relational algebra

A graph of boxes
Leaf boxes are tables
The standard box is the SELECT box (actually a select-
project-join query block with optional duplicate 
elimination)
Other types include GROUPBY (aggregation), UNION, 
INTERSECT, EXCEPT
Can always add new types (e.g., OUTERJOIN)



5

13

More on QGM boxes
Head: declarative description of the output

Schema: list of output columns
Property: Are output tuples DISTINCT?

Body: how to compute the output
Quantifiers: tuple variables that range over other boxes

• F: regular tuple variable, e.g., FROM R AS r
• E: existential quantifier, e.g., IN (subquery), or = ANY(subquery)
• A: universal quantifier, e.g., > ALL(subquery)
• S: scalar subquery, e.g., = (subquery)

Quantifiers are connected a hypergraph
• Hyperedges are predicates

Enforce DISTINCT, preserve duplicates, or permit duplicates?
• For the output of this box, and for each quantifier

14

QGM example
SELECT DISTINCT
q1.partno, q1.descr, q2.suppno

FROM inventory q1, quotations q2
WHERE q1.partno = q2.partno
AND q1.descr = ‘engine’
AND q2.price <= ALL

(SELECT q3.price
FROM quotations q3
WHERE q2.partno = q3.partno);

15

Query rewrite in DB2

Goal: make the logical plan as general as possible, 
i.e., merge boxes

Rule-based transformations on QGM
Merge subqueries in FROM
Convert E to F (e.g., IN/ANY subqueries to joins)

Convert intersection to join

Convert S to F (i.e., scalar subqueries to joins)

Convert outerjoin to join

Magic (i.e., correlated subqueries to joins)



6

16

E to F conversion

SELECT DISTINCT name
FROM Student
WHERE SID = ANY (SELECT SID FROM Enroll);
SELECT DISTINCT name
FROM Student, (SELECT SID FROM Enroll) t
WHERE Student.SID = t.SID;
(EtoF rule)

SELECT DISTINCT name
FROM Student, Enroll
WHERE Student.SID = Enroll.SID; 
(SELMERGE rule)

17

Problem with duplicates

Same query, without DISTINCT
SELECT name
FROM Student
WHERE SID = ANY (SELECT SID FROM Enroll); 
SELECT name
FROM Student, Enroll
WHERE Student.SID = Enroll.SID; 

18

A way of preserving duplicates

SELECT name
FROM Student
WHERE SID = ANY (SELECT SID FROM Enroll); 

Suppose that SID is a key of Student
SELECT DISTINCT Student.SID, name
FROM Student, Enroll
WHERE Student.SID = Enroll.SID; 
(ADDKEYS rule)

Then simply project out Student.SID



7

19

Another E to F trick
Sometimes an ANY subquery can be turned into an 
aggregate subquery without ANY, to improve performance 
further

SELECT * FROM Student s1
WHERE GPA > ANY
(SELECT GPA FROM Student s2
WHERE s2.name = ‘Bart’);

SELECT * FROM Student s1
WHERE GPA >
(SELECT MIN(GPA) FROM Student s2
WHERE s2.name = ‘Bart’);

20

Does the same trick apply to ALL?
SELECT * FROM Student s1
WHERE GPA > ALL
(SELECT GPA FROM Student s2
WHERE s2.name = ‘Bart’);

SELECT * FROM Student s1
WHERE GPA >
(SELECT MAX(GPA) FROM Student s2
WHERE s2.name = ‘Bart’);

21

Correlated subqueries

SELECT CID FROM Course
WHERE title LIKE ’CPS%’
AND min_enroll >

(SELECT COUNT(*) FROM Enroll
WHERE Enroll.CID = Course.CID);

Executing correlated subquery is expensive
The subquery is evaluated once for every CPS course

Decorrelate!



8

22

COUNT bug
SELECT CID FROM Course
WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);

SELECT CID
FROM Course, (SELECT CID, COUNT(*) AS cnt

FROM Enroll GROUP BY CID) t
WHERE t.CID = Course.CID AND min_enroll > t.cnt
AND title LIKE ’CPS%’;

First compute the enrollment for all(?) courses

23

Magic decorrelation

Simple idea
Process the outer query using other predicates

• To collect bindings for correlated variables in the subquery

Evaluate the subquery using the bindings collected
• It is a join

• Once for the entire set of bindings
– Compared to once per binding in the naïve approach

Use the result of the subquery to refine the outer query
• Another join

Name “magic” comes from a technique in recursive 
processing of Datalog queries

24

Magic decorrelation example
SELECT CID FROM Course
WHERE title LIKE ’CPS%’
AND min_enroll > (SELECT COUNT(*) FROM Enroll

WHERE Enroll.CID = Course.CID);
CREATE VIEW Supp_Course AS
SELECT * FROM Course WHERE title LIKE ’CPS%’;

CREATE VIEW Magic AS
SELECT DISTINCT CID FROM Supp_Course;

CREATE VIEW DS AS
(SELECT Enroll.CID, COUNT(*) AS cnt
FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
GROUP BY Enroll.CID) UNION

(SELECT Magic.CID, 0 AS cnt FROM Magic
WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);

SELECT Supp_Course.CID FROM Supp_Course, DS
WHERE Supp_Course.CID = DS.CID
AND min_enroll > DS.cnt;

Process the outer query
without the subquery

Collect bindings

Evaluate the subquery
with bindings

Finally, refine
the outer query



9

25

Summary of query rewrite

Break the artificial boundary between queries and
subqueries

Combine as many query blocks as possible in a 
select-project-join block, where the clean rules of 
relational algebra apply

Handle with care—extremely tricky with duplicates,
NULL’s, empty tables, and correlation


