Query Optimization I

CPS 216

Advanced Database Systems

A query’s trip through the DBMS

SOL query SELECT title, SID
OL query FROM Enroll, Course
(o) WHERE Enval .10 =
SFW, Course.CID;
(select-list | (where-list) Parse tree
/1 ﬁum-&t)
RC R TIVN h

f title, SID

Enroll  Course Logical plan § Enroll.CID = Course.CID]

— X
MERGE-JOIN (CID) Physical plan
Ve \

SCAN (Enroll) Result

Parsing & validation

< Parser: SQL — parse tree
= Good old lex & yacc
® Detect and reject syntax errors
+ Validator: parse tree — logical plan

= Detect and reject semantic errors
* Nonexistent tables/views/columns

* Type mismatches (e.g., AVG(name), name + GPA, Student
UNION Enroll)

= Wildcard (SELECT *) and view expansion

® Use information stored in system catalog tables (contains
all metadata/schema information)

Logical plan

< A tree whose nodes are logical operators
= Often a tree of relational algebra operators
= DB2 uses QGM (Query Graph Model)

% There are many equivalent logical plans

7|rzizle
qudem.nmﬂBZ“Barr” N Student SID = Enroll SID N Enroll.CID = Course.CID
2 by
N . title
/><< Course An equivalent plan: 1"
Student Envoll \Emal[,CID = Course.CID

Course
SELECT Course.title

> — Enroll.S
FROM Student, Enroll, Course &tdzﬂt.SID = Enroll SID

WHERE Student.name = 'Bart' Enroll

AND Student.SID = Enrol1.SID o . A

AND Enrol1.CID = Course.CID; | name = “Bart
Student

Query optimization and execution

< Recall that a physical plan tells the DBMS query execution
engine how to execute the query

® One logical plan can have many possible physical plans (with
equivalent results, but different costs and assumptions)

PROJECT (title) PRO_}EICT (vitle)
1
INDEX-NESTED-{OOP-_]OIN (CID) MERGE-JOIN (CID)
N

Index on Course(CID)

SORT,(CID) SCAN (Course)
INDEX-NESTE)-LOOP-JOIN (SID)

MERGE-JOIN QID)
Index on Enroll(SID)
« .. SORT (SID)
INDEX-SCAN (zame = “Bart”) FILTER (#ame = “Bart”)
1 1 SCAN (Enroll)
Index on Student(name) SCAN (Student)

< Query optimizer: one logical plan — “best” physical plan
< Query execution engine: physical plan — results

Query optimization

% Conceptually
= Consider a space of possible plans (next)
= Estimate costs of plans in the search space (next Tuesday)
= Search through the space for the “best” plan (next Thursday)
< Often the goal is not picking the absolute optimum, but
instead avoiding the horrible ones

/ Any of these will do
—4+QOC0-004 OO O—C0——0—
1second 1 minute 1 hour




Plan enumeration in relational algebra

< Apply relational algebra equivalences

= Join reordering: X and < are associative and
commutative (except when column ordering is
considered, but that is unimportant)

A AN

>J >

R/\S T S/\R T S R/\T

More relational algebra equivalences

+ Convert 0,-X to/from >, 0, (R X §)=R >, S
« Merge/split 07s: 0,,(0,, R) = 0,1 o, R
 Merge/split 7's: 7, (7, R) = 7, R, where L1 C L2
% Push down/pull up o:
Oy ppr s RXS) = (0, R) 1, (0, S), where
= pris a predicate involving only R columns
= psis a predicate involving only § columns
= p is a predicate involving both R and § columns
< Push down m: 7, (Up R)=m, (UP (m, .- R)), where
= L’ is the set of columns referenced by p that are not in L
< Many more (seemingly trivial) equivalences...

= Can be systematically used to transform a plan to new ones

Relational query rewrite example

7|th'tle
ol—Stﬂdmt.mmz:“Bart" A Student SID = Enroll SID N Enroll.CID = Course.CID
X
- X ~ Course
Student  Enroll 7|T,,-,[e
q’Em‘oll.CID = Course.CID C
Push down o onvert g,-X to Mﬁ

X
ourse Trtlt[c’

a -
Student SID = Enroll SID
Jore 7 B3, CID = Course.CID
= C
Enroll ourse
O Student name = “Bart” N&m’mt.ﬂD = Enroll SID
1
Student Enroll
?nams = “Bart”
Student

10

Heuristics-based query optimization

+ Start with a logical plan
+ Push selections/projections down as much as possible
® Why? Reduce the size of intermediate results
= Why not? May be expensive; maybe joins filter better
+ Join smaller relations first, and avoid cross product
= Why? Reduce the size of intermediate results
= Why not? Size depends on join selectivity too
< Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

SQL query rewrite

< More complicated—subqueries and views divide a
query into nested “blocks”

® Processing each block separately forces particular join
methods and join order

® Even if the plan is optimal for each block, it may not be
optimal for the entire query

< Unnest query: convert subqueries/views to joins
@ Then we just deal with select-project-join queries

® Where the clean rules of relational algebra apply

DB2’s QGM

Leung et al. “Query Rewrite Optimization Rules in IBM DB2 Universal
Database.”

% Query Graph Model: DB2’s logical plan language
= More high-level than relational algebra

< A graph of boxes
= Leaf boxes are tables

= The standard box is the SELECT box (actually a select-
project-join query block with optional duplicate
elimination)

= Other types include GROUPBY (aggregation), UNION,
INTERSECT, EXCEPT

= Can always add new types (e.g., OUTERJOIN)




More on QGM boxes QGM example

 Head: declarative description of the output ) W

i HeAD o

SELECT DISTINCT
ql.partno, ql.descr, g2.suppno
FROM inventory ql, quotations q2
il 5 i | i WHERE gl.partno = g2.partno
i AND ql.descr = 'engine'
AND q2.price <= ALL
(SELECT g3.price

e

® Schema: list of output columns

= Property: Are output tuples DISTINCT?

< Body: how to compute the output
FROM quotations q3
WHERE g2.partno = g3.partno)

® Quantifiers: tuple variables that range over other boxes
* F: regular tuple variable, e.g., FROM R AS »

* E: existential quantifier, e.g., IN (subguery), or = ANY (subguery)

* A: universal quantifier, e.g., > ALL (subquery) SELECTE

* S: scalar subquery, e.g., = (subquery)

= Quantifiers are connected a hypergraph

* Hyperedges are predicates
= Enforce DISTINCT, preserve duplicates, or permit duplicates?

* For the output of this box, and for each quantifier

Query rewrite in DB2 E to F conversion

% Goal: make the logical plan as general as possible, < SELECT DISTINCT name
FROM Student

WHERE SID = ANY (SELECT SID FROM Enroll);
< SELECT DISTINCT name

i.e., merge boxes

< Rule-based transformations on QGM

ey AL FROM Student, (SELECT SID FROM Enroll) t
= Convert E to F (e.g., IN/ANY subqueries to joins) WHERE Student.SID = t.SID;

= Convert intersection to join (EtoF rule)

= Convert S to F (i.e., scalar subqueries to joins) < SELECT DISTINCT name

FROM Student, Enroll
WHERE Student.SID = Enrol11.SID;
(SELMERGE rule)

= Convert outerjoin to join

= Magic (i.e., correlated subqueries to joins)

Problem with duplicates A way of preserving duplicates
Same query, without DISTINCT % SELECT name
< SELECT name FROM Student
FROM Student WHERE SID = ANY (SELECT SID FROM Enroll);
WHERE SID = ANY (SELECT SID FROM Enroll);
< SELECT name Suppose that SID is a key of Student
FROM Student, Enroll + SELECT DISTINCT Student.SID, name
WHERE Student.SID = Enrol1.SID; FROM Student, Enroll
% Suppose some student takes multiple classes WHERE Student.SID = Enrol1.SID;
® The first query returns name once; the second multiple times (ADDKEYS rule)
% Adding DISTINCT to the second query does not help % Then simply project out Student.SID
= Suppose two students have the same name




Another E to F trick

« Sometimes an ANY subquery can be turned into an
aggregate subquery without ANY, to improve performance
further

< SELECT * FROM Student sl
WHERE GPA > ANY
(SELECT GPA FROM Student s2
WHERE s2.name = 'Bart');

< SELECT * FROM Student sl
WHERE GPA >
(SELECT MIN(GPA) FROM Student s2
WHERE s2.name = 'Bart');

20

Does the same trick apply to ALL?

< SELECT * FROM Student sl
WHERE GPA > ALL
(SELECT GPA FROM Student s2
WHERE s2.name = 'Bart');

< SELECT * FROM Student sl
WHERE GPA >
(SELECT MAX(GPA) FROM Student s2
WHERE s2.name = 'Bart');

< Suppose there is no student named Bart

= The first query returns all students; the second returns none

Correlated subqueries

< SELECT CID FROM Course
WHERE title LIKE 'CPS%'
AND min_enroll >
(SELECT COUNT(*) FROM Enroll
WHERE Enrol1.CID = Course.CID);

< Executing correlated subquery is expensive

= The subquery is evaluated once for every CPS course

< Decorrelate!

22

COUNT bug

< SELECT CID FROM Course
WHERE title LIKE 'CPS%'
AND min_enroll > (SELECT COUNT(*) FROM Enroll
WHERE Enrol11.CID = Course.CID);

« SELECT CID First compute the enrollment for all(?) courses

FROM Course, | (SELECT CID, COUNT(*) AS cnt
FROM Enroll GROUP BY CID) t
WHERE t.CID = Course.CID AND min_enroll > t.cnt
AND title LIKE 'CPS%';

% Suppose a CPS class is empty
= The first query returns this course; the second does not

Magic decorrelation

+ Simple idea
= Process the outer query using other predicates
* To collect bindings for correlated variables in the subquery
= Evaluate the subquery using the bindings collected
® It is a join
* Once for the entire set of bindings
— Compared to once per binding in the naive approach
® Use the result of the subquery to refine the outer query
¢ Another join
< Name “magic” comes from a technique in recursive
processing of Datalog queries

Magic decorrelation example

% SELECT CID FROM Course
WHERE title LIKE 'CPS%'
AND min_enroll > (SELECT COUNT(*) FROM Enroll
WHERE Enrol1.CID = Course.CID);
< CREATE VIEW Supp_Course AS Process the outer query
SELECT * FROM Course WHERE title LIKE 'CPS%'; wichout che subquery

CREATE VIEW Magic AS
SELECT DISTINCT CID FROM Supp_Course;

CREATE VIEW DS AS Evaluate the subquery
(SELECT Enrol1.CID, COUNT(*) AS cnt with bindings

FROM Magic, Enroll WHERE Magic.CID = Enrol1.CID

GROUP BY Enrol1.CID) UNION

(SELECT Magic.CID, 0 AS cnt FROM Magic

WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);

SELECT Supp_Course.CID FROM Supp_Course, DS Finally, refine
WHERE Supp_Course.CID = DS.CID the outer query
AND min_enroll > DS.cnt;

Collect bindings




Summary of query rewrite

+ Break the artificial boundary between queries and
subqueries

< Combine as many query blocks as possible in a
select-project-join block, where the clean rules of
relational algebra apply

< Handle with care—extremely tricky with duplicates,
NULL’s, empty tables, and correlation




