

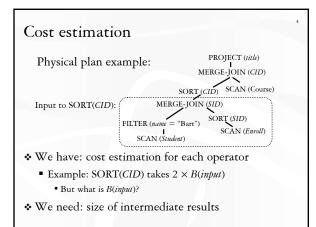
Announcements (April 19)

- Homework #4 (last one; short) will be assigned this Thursday
- Homework #3 graded; grades posted
- Project demo period April 28 May 1
 - Please email me to sign up for a 30-minute slot
- Final exam on May 2 (Monday 2-5pm)

Review of the bigger picture

Query optimization

- Consider a space of possible plans (April 7)
 - Rewrite logical plan to combine "blocks" as much as possible
 - Each block will then be optimized separately
 - Fewer blocks \rightarrow larger plan space
- * Estimate costs of plans in the search space (today)
- Search through the space for the "best" plan (next lecture)



Simple statistics

- Suppose DBMS collects the following statistics for each table *R*
 - Size of R: |R|
 - For each column A in R, the number of distinct A values: $|\pi_A R|$
 - Assumption: *R*.*A* values are uniformly distributed over $\pi_A R$ (i.e., all values have the same count in *R*)
- Statistics are traditionally re-computed periodically; accurate statistics are not required for estimation

Selections with equality predicates

 $\diamond Q: \sigma_{A=v} R$

- * Additional assumption: v does appear in R
- $\mathbf{\diamond} |Q| \approx \left[|R| / |\pi_A R| \right]$
 - $1/|\pi_A R|$ is the selectivity factor of predicate (A = v)^{This} predicate reduces the size of input table by the
 - selectivity factor

Conjunctive predicates

- $\diamond Q: \sigma_{A = u \text{ and } B = v} R$
- * Additional assumption: (A = u) and (B = v) are independent
 - Example:
 - Counterexample:
- $\diamond |Q| \approx \left\lceil |R| / (|\pi_A R| \cdot |\pi_B R|) \right\rceil$
 - Reduce the input size by all selectivity factors

Negated and disjunctive predicates

- $\diamond Q: \sigma_{A \neq v} R$
 - $|Q| \approx \left[|R| \cdot (1 1/|\pi_A R|) \right]$
 - Selectivity factor of $\neg p$ is (1 selectivity factor of p)
- ★ Q: $\sigma_{A = u \text{ or } B = v} R$ ■ $|Q| \approx [|R| \cdot (1/|\pi_A R| + 1/|\pi_B R|)]?$
 - $|Q| \approx \left[|R| \cdot (1 (1 1/|\pi_A R|) \cdot (1 1/|\pi_B R|)) \right]$

Range predicates

- $\clubsuit \ Q: \ \sigma_{A \ > \ v} \ R$
- Not enough information!
 - Just pick, say, $|Q| \approx \lceil |R| \cdot 1/3 \rceil$
- * With more information
 - Largest R.A value: high(R.A)
 - Smallest R.A value: low(R.A)
 - $|Q| \approx \lceil |R| \cdot (\text{high}(R.A) \nu)/(\text{high}(R.A) \text{low}(R.A)) \rceil$ • Additional assumption: uniform spread
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

$\bigstar Q: R(A, B) \bowtie S(B, C)$

- * Additional assumption: containment of value sets
 - Every row in the "smaller" table (one with fewer distinct values for the join column) joins with some row in the other table
 - That is, if $|\pi_B R| \leq |\pi_B S|$ then $\pi_B R \subseteq \pi_B S$
 - Certainly not true in general
- $\diamond |Q| \approx \left[|R| \cdot |S| / \max(|\pi_B R|, |\pi_B S|) \right]$
 - Selectivity factor of R.B = S.B is $1/\max(|\pi_B R|, |\pi_B S|)$

Multi-table equi-join

- $\bigstar Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- What is the number of distinct C values in the join of R and S?

11

12

- * Additional assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A(R \bowtie S) = \pi_A R$
 - Certainly not true in general

Multi-table equi-join (cont'd)

- $\diamond Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- * Start with the product of relation sizes
 - $\bullet |R| \cdot |S| \cdot |T|$
- Reduce the total size by the selectivity factor of each join predicate
 - $R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|)$
 - $S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|)$
 - $|Q| \approx \left[\left(|R| \cdot |S| \cdot |T| \right) \right]$
 - $(\max(\left|\pi_{B} R\right|, \left|\pi_{B} S\right|) \cdot \max(\left|\pi_{C} S\right|, \left|\pi_{C} T\right|)) \right]$

Recap: cost estimation with simple stats

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- * Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer "hints" SELECT * FROM Student WHERE GPA > 3.9;
- SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9; Next: better estimation using more information
- (histograms)

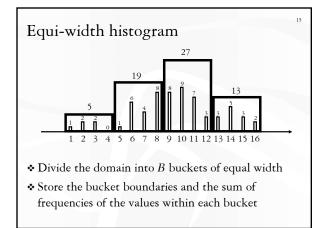
Histograms

* Motivation

- |*R*|, |π_A *R*|, high(*R*.*A*), low(*R*.*A*)
 Too little information
- Actual distribution of R.A: (v₁, f₁), (v₂, f₂), ..., (v_n, f_n)
 f_i is frequency of v_i, or the number of times v_i appears as R.A
 Too much information

14

- * Anything in between?
 - Partition the domain of R.A into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the "knob" that controls the resolution



Construction and maintenance

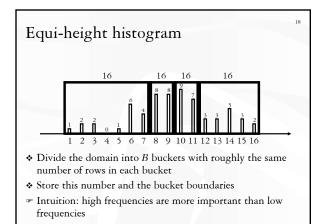
\bullet Construction

- If high(*R.A*) and low(*R.A*) are known, use one pass over *R* to construct an accurate equi-width histogram
- Keep a running count for each bucketIf scanning is unacceptable, use sampling
 - Construct a histogram on R_{sample} , and scale frequencies by $|R| / |R_{sample}|$
- ✤ Maintenance
 - Incremental maintenance: for each update on *R*, increment/decrement the corresponding bucket frequencies
 - · Periodical recomputation: because distribution changes slowly

Using an equi-width histogram

 $\diamond Q: \sigma_{A=5} R$

- 5 is in bucket [5, 8] (with 19 rows)
- Assume uniform distribution within the bucket
- $|Q| \approx 19/4 \approx 5$ (|Q| = 1, actually)
- ♦ $Q: \sigma_{A \ge 7 \text{ and } A \le 16} R$
 - [7, 16] covers [9, 12] (27) and [13, 16] (13)
 - [7, 16] partially covers [5, 8] (19)
 - $|Q| \approx 19/2 + 27 + 13 \approx 50$ (|Q| = 52, actually)
- $\diamond Q: R(A, B) \bowtie S(B, C)$
 - Consider only joining buckets in histograms for R.B and S.B
 - Rows in other buckets do not join
 - Within the joining buckets, use simple rules



Construction and maintenance

Construction

- Sort all *R.A* values, and then take equally spaced splits
 Example: 1 2 2 3 4 7 8 9 10 10 10 10 11 11 12 12 14 16 ...
- Sampling also works

✤ Maintenance

Incremental maintenance

- Merge adjacent buckets with small counts
- Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
- Periodic recomputation also works

Using an equi-height histogram

- $\diamond Q: \sigma_{A=5} R$
 - 5 is in bucket [1, 7] (16)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 16/7 \approx 2$ (|Q| = 1, actually)
- $\bigstar Q: \sigma_{A \ge 7 \text{ and } A \le 16} R$
 - [7, 16] covers [8, 9], [10, 11], [12, 16] (all with 16)
 - [7, 16] partially covers [1, 7] (16)
 - $|Q| \approx 16/7 + 16 + 16 + 16 \approx 50$

$$(|Q| = 52, actually)$$

21

Join similar to equi-width histogram

Histogram tricks

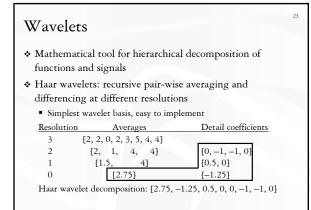
- * Store the number of distinct values in each bucket
 - To remove the effects of the values with 0 frequency
 These values tend to cause underestimation
 - Assume uniform spread (the difference between this value and the next value with non-zero frequency)
- Compressed histogram
 - Store (v_i, f_i) pairs explicitly if f_i is high
 - For other values, use an equi-width or equi-height histogram
- Self-tuning
 - Analyze feedback from query execution engine to refine histograms
 - Aboulnaga and Chaudhuri, SIGMOD 1999

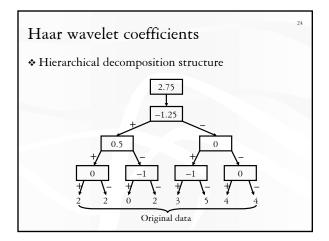
More histograms

- ☞ More in Poosala et al., SIGMOD 1996
- V-optimal(V, F) histogram
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize $\sum_i VAR_i$ overall, where VAR_i is the frequency variance within bucket i

22

- A MaxDiff(V, A) histogram
 - Define area to be the product of the frequency of a value and its spread
 - Insert bucket boundaries where two adjacent areas differ by large amounts
 - A bit easier to construct than V-optimal; comparable performance





Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution
 - Matias et al., SIGMOD 1998
 - Transform the distribution function which maps v_i to f_i
- * Steps
 - Compute cumulative data distribution function C(v)
 C(v) is the number of tuples with R.A ≤ v
 - Compute wavelet transform of *C*
 - Coefficient thresholding: keep only the coefficients that are largest in absolute normalized value
 - \bullet For Haar wavelets, divide coefficients at resolution j by $2^{\,(j/2)}$

Using a wavelet-based histogram

- $\diamond Q: \sigma_{A > u \text{ and } A \leq v} R$
- $\diamond |Q| = C(v) C(u)$
- ***** Search the tree to reconstruct C(v) and C(u)
 - Worst case: two paths, $O(\log N)$, where N is the size of the domain
 - If we just store *B* coefficients, it becomes *O*(*B*), but answers are now approximate
- What about $Q: \sigma_{A=v} R$?

Summary of histograms

 Wavelet-based histograms are shown to work better than traditional bucket-based histograms

27

- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- ♦ Trade-off: better accuracy ↔ bigger size, and higher construction and maintenance costs