## Query Optimization

Part II

CPS 216
Advanced Database Systems

## Announcements (April 19)

* Homework \#4 (last one; short) will be assigned this Thursday
* Homework \#3 graded; grades posted
* Project demo period April 28 - May 1
- Please email me to sign up for a 30-minute slot
* Final exam on May 2 (Monday 2-5pm)


## Review of the bigger picture

Query optimization

* Consider a space of possible plans (April 7)
- Rewrite logical plan to combine "blocks" as much as possible
- Each block will then be optimized separately
- Fewer blocks $\rightarrow$ larger plan space
* Estimate costs of plans in the search space (today)
* Search through the space for the "best" plan (next lecture)


## Cost estimation



* We have: cost estimation for each operator
- Example: SORT(CID) takes $2 \times B$ (input)
- But what is $B$ (input)?
* We need: size of intermediate results


## Simple statistics

* Suppose DBMS collects the following statistics for each table $R$
- Size of $R:|R|$
- For each column $A$ in $R$, the number of distinct $A$ values: $\left|\pi_{A} R\right|$
- Assumption: R.A values are uniformly distributed over $\pi_{A} R$ (i.e., all values have the same count in $R$ )
$\sigma$ Statistics are traditionally re-computed periodically; accurate statistics are not required for estimation


## Selections with equality predicates

* $Q: \sigma_{A={ }_{v}} R$
$*$ Additional assumption: $v$ does appear in $R$
$\otimes|Q| \approx\left\lceil|R| /\left|\pi_{A} R\right|\right\rceil$
- $1 /\left|\pi_{A} R\right|$ is the selectivity factor of predicate $(A=v)$
$\checkmark$ This predicate reduces the size of input table by the selectivity factor


## Conjunctive predicates

* Q: $\sigma_{A=u \text { and } B={ }_{v} R}$
* Additional assumption: $(A=u)$ and $(B=v)$ are independent
- Example:
- Counterexample:
$\therefore|Q| \approx\left\lceil|R| /\left(\left|\pi_{A} R\right| \cdot\left|\pi_{B} R\right|\right)\right\rceil$
- Reduce the input size by all selectivity factors


## Negated and disjunctive predicates

$\qquad$

* Q: $\sigma_{A \neq v} R$
- $|Q| \approx\left\lceil|R| \cdot\left(1-1 /\left|\pi_{A} R\right|\right)\right\rceil$
- Selectivity factor of $\neg p$ is ( $1-$ selectivity factor of $p$ )
* Q: $\sigma_{A=u \text { or } B={ }_{v} R}$
- $|Q| \approx\left\lceil|R| \cdot\left(1 /\left|\pi_{A} R\right|+1 /\left|\pi_{B} R\right|\right)\right\rceil$ ?
- $|Q| \approx\left\lceil|R| \cdot\left(1-\left(1-1 /\left|\pi_{A} R\right|\right) \cdot\left(1-1 /\left|\pi_{B} R\right|\right)\right)\right\rceil$


## Range predicates

$\qquad$

* Q: $\sigma_{A>{ }_{v}} R$
* Not enough information!
- Just pick, say, $|Q| \approx\lceil|R| \cdot 1 / 3\rceil$
* With more information
- Largest $R . A$ value: $\operatorname{high}(R . A)$
- Smallest $R . A$ value: $\operatorname{low}(R . A)$
$\qquad$
$\qquad$
- $|Q| \approx\lceil|R| \cdot(\operatorname{high}(R . A)-v) /(\operatorname{high}(R . A)-\operatorname{low}(R . A))\rceil$
- Additional assumption: uniform spread
- In practice: sometimes the second highest and lowest are used instead
- The highest and the lowest are often used by inexperienced database designer to represent invalid values!


## Two-way equi-join

* $Q: R(A, B) \bowtie S(B, C)$
* Additional assumption: containment of value sets
- Every row in the "smaller" table (one with fewer distinct values for the join column) joins with some row in the other table
- That is, if $\left|\pi_{B} R\right| \leq\left|\pi_{B} S\right|$ then $\pi_{B} R \subseteq \pi_{B} S$
- Certainly not true in general
$\div|Q| \approx\left\lceil|R| \cdot|S| / \max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right)\right\rceil$
- Selectivity factor of $R . B=S . B$ is
$1 / \max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right)$


## Multi-table equi-join

* $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
*What is the number of distinct $C$ values in the join of $R$ and $S$ ?
* Additional assumption: preservation of value sets
- A non-join attribute does not lose values from its set of possible values
- That is, if $A$ is in $R$ but not $S$, then $\pi_{A}(R \bowtie S)=\pi_{A} R$
- Certainly not true in general


## Multi-table equi-join (cont'd)

* $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
* Start with the product of relation sizes
- $|R| \cdot|S| \cdot|T|$
$*$ Reduce the total size by the selectivity factor of each join predicate
- R.B $=$ S.B: $1 / \max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right)$
- S.C $=$ T.C: $1 / \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)$
- $|Q| \approx\lceil(|R| \cdot|S| \cdot|T|) /$ $\left.\left(\max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right) \cdot \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)\right)\right\rceil$


## Recap: cost estimation with simple stats

* Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
$\%$ Lots of assumptions and very rough estimation
- Accurate estimate is not needed
- Maybe okay if we overestimate or underestimate consistently
- May lead to very nasty optimizer "hints"

SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;

* Next: better estimation using more information (histograms)


## Histograms

Motivation

- $|R|,\left|\pi_{A} R\right|, \operatorname{high}(R . A), \operatorname{low}(R . A)$
- Too little information
- Actual distribution of R.A: $\left(v_{1}, f_{1}\right),\left(v_{2}, f_{2}\right), \ldots,\left(v_{n}, f_{n}\right)$
- $f_{i}$ is frequency of $v_{i}$, or the number of times $v_{i}$ appears as R.A
- Too much information

Anything in between?

- Partition the domain of R.A into buckets
- Store a small summary of the distribution within each bucket
- Number of buckets is the "knob" that controls the resolution


## Equi-width histogram



Divide the domain into $B$ buckets of equal width
Store the bucket boundaries and the sum of
frequencies of the values within each bucket
$\qquad$
$\qquad$
$\qquad$

## Construction and maintenance

* Construction
- If high $(R . A)$ and $\operatorname{low}(R . A)$ are known, use one pass over $R$ to construct an accurate equi-width histogram
- Keep a running count for each bucket
- If scanning is unacceptable, use sampling
- Construct a histogram on $R_{\text {sample }}$ and scale frequencies by $|R| /\left|R_{\text {sampple }}\right|$

Maintenance

- Incremental maintenance: for each update on $R$, increment/decrement the corresponding bucket frequencies
- Periodical recomputation: because distribution changes slowly


## Using an equi-width histogram

* Q: $\sigma_{A=5} R$
- 5 is in bucket $[5,8]$ (with 19 rows)
- Assume uniform distribution within the bucket
- $|Q| \approx 19 / 4 \approx 5$
$(|Q|=1$, actually)
* Q: $\sigma_{A \geq 7 \text { and } A \leq 16} R$
- $\{7,16\}$ covers $[9,12\}$ (27) and $[13,16\}$ (13)
- $[7,16]$ partially covers $\{5,8]$ (19)
- $|Q| \approx 19 / 2+27+13 \approx 50 \quad(|Q|=52$, actually $)$
* $Q: R(A, B) \bowtie S(B, C)$
- Consider only joining buckets in histograms for $R . B$ and $S . B$
- Rows in other buckets do not join
- Within the joining buckets, use simple rules

Equi-height histogram

* Divide the domain into $B$ buckets with roughly the same number of rows in each bucket
* Store this number and the bucket boundaries
$\sigma$ Intuition: high frequencies are more important than low frequencies



## Construction and maintenance

## $*$ Construction

- Sort all $R . A$ values, and then take equally spaced splits
- Example: 1223478910101010111112121416 ..
- Sampling also works
* Maintenance
- Incremental maintenance
- Merge adjacent buckets with small counts
- Split any bucket with a large count
- Select the median value to split
- Need a sample of the values within this bucket to work well
- Periodic recomputation also works


## Using an equi-height histogram

$* Q: \sigma_{A=5} R$

- 5 is in bucket [1, 7] (16)
- Assume uniform distribution within the bucket
- $|Q| \approx 16 / 7 \approx 2 \quad(|Q|=1$, actually $)$
* $Q: \sigma_{A \geq 7 \text { and } A \leq 16} R$
- $[7,16]$ covers $\{8,9],[10,11\},[12,16\}$ (all with 16)
- $[7,16\}$ partially covers $\{1,7]$ (16) $\qquad$
- $|Q| \approx 16 / 7+16+16+16 \approx 50$

$$
(|Q|=52, \text { actually })
$$

* Join similar to equi-width histogram


## Histogram tricks

$*$ Store the number of distinct values in each bucket

- To remove the effects of the values with 0 frequency
- These values tend to cause underestimation
- Assume uniform spread (the difference between this value and the next value with non-zero frequency)
* Compressed histogram
- Store ( $v_{i}, f_{i}$ ) pairs explicitly if $f_{i}$ is high
- For other values, use an equi-width or equi-height histogram
* Self-tuning
- Analyze feedback from query execution engine to refine histograms
- Aboulnaga and Chaudhuri, SIGMOD 1999


## More histograms

- More in Poosala et al., SIGMOD 1996
* V-optimal $(V, F)$ histogram
- Avoid putting very different frequencies into the same bucket
- Partition in a way to minimize $\sum_{i} V A R_{i}$ overall, where $V A R_{i}$ is the frequency variance within bucket $i$
* MaxDiff $(V, A)$ histogram
- Define area to be the product of the frequency of a value and its spread
- Insert bucket boundaries where two adjacent areas differ by large amounts
- A bit easier to construct than V-optimal; comparable performance


## Wavelets

* Mathematical tool for hierarchical decomposition of functions and signals
* Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
- Simplest wavelet basis, easy to implement

Resolution $\qquad$ s $[2,2,0,2,3,5,4,4]$
$[2, \quad 1,4,4] \quad[0,-1,-1,0]$ $[1.5,4] \quad[0.5,0]$ $\begin{array}{ll}{[2.75]} & {[-1.25]}\end{array}$
Haar wavelet decomposition: $\{2.75,-1.25,0.5,0,0,-1,-1,0]$
$\qquad$

## Haar wavelet coefficients

* Hierarchical decomposition structure



## Wavelet-based histogram

* Idea: use a compact subset of wavelet coefficients to approximate the data distribution
- Matias et al., SIGMOD 1998
- Transform the distribution function which maps $v_{i}$ to $f_{i}$
$*$ Steps
- Compute cumulative data distribution function $C(v)$
- $C(v)$ is the number of tuples with $R \cdot A \leq v$
- Compute wavelet transform of $C$
- Coefficient thresholding: keep only the coefficients that are largest in absolute normalized value
- For Haar wavelets, divide coefficients at resolution $j$ by $2^{(j / 2)}$


## Using a wavelet-based histogram

$* Q: \sigma_{A>u \text { and } A \leq v} R$
$*|Q|=C(v)-C(u)$
$\star$ Search the tree to reconstruct $C(v)$ and $C(u)$

- Worst case: two paths, $O(\log N)$, where $N$ is the size of the domain
- If we just store $B$ coefficients, it becomes $O(B)$, but answers are now approximate
* What about $Q: \sigma_{A=v} R$ ?


## Summary of histograms

* Wavelet-based histograms are shown to work better than traditional bucket-based histograms
* The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
* Trade-off: better accuracy $\leftrightarrow$ bigger size, and higher construction and maintenance costs

$\qquad$

