Query Optimization
Parc II

CPS 216

Advanced Database Systems

Announcements (April 19)

<+ Homework #4 (last one; short) will be assigned this
Thursday

<+ Homework #3 graded; grades posted
+ Project demo period April 28 — May 1
® Please email me to sign up for a 30-minute slot

+ Final exam on May 2 (Monday 2-5pm)

Review of the bigger picture

Query optimization
< Consider a space of possible plans (April 7)

= Rewrite logical plan to combine “blocks” as much as
possible

= Each block will then be optimized separately
= Fewer blocks — larger plan space
< Estimate costs of plans in the search space (today)

% Search through the space for the “best” plan (next
lecture)

Cost estimation

Physical plan example: R D0

MERGE-JOIN (CID)
N
SORT (CID) SCAN (Course)
Input to SORT(CID): { MERGEJOIN (SID)
! SORT (SID) i
SCAN (Enroll)

{ FILTER (namé = “Barc”)
: I
SCAN (Student)

% We have: cost estimation for each operator
= Example: SORT(CID) takes 2 X B(input)
® But what is B(input)?

% We need: size of intermediate results

Simple statistics

< Suppose DBMS collects the following statistics for
each table R

® Size of R: |R]|
= For each column A in R, the number of distinct A values:
|7TA R|

= Assumption: R.A values are uniformly distributed over
74 R (i.e., all values have the same count in R)
@ Statistics are traditionally re-computed periodically;
accurate statistics are not required for estimation

Selections with equality predicates

*Q:0,_,R
< Additional assumption: v does appear in R
0| ~[|R|/|myR]|]

"1/ |7T 4 R | is the selectivity factor of predicate (A = v)

2
o

& This predicate reduces the size of input table by the
selectivity factor

Conjunctive predicates

o .
M Q JA=uandB=vR

% Additional assumption: (A = #) and (B = v) are

independent

= Example:

= Counterexample:

2
o

ol = [|R|/(|myR| - [m5 R]) T

= Reduce the input size by all selectivity factors

Negated and disjunctive predicates

#Q: 0, R

[0l = [|R| -Q-1/|myR])]

* Selectivity factor of = p is (1 — selectivity factor of p)

s ()-
.’.Q' UA://orB:vR

ol =~ TR~/ |myR| + 1/ [z R|)]?

ol ~[[R] - A= -1/]|myR)- A =1/[msR[)]

Range predicates

.
+Q:

O45,R

< Not enough information!
= Just pick, say, |Q| ~ [|R]| -1/3]

< With more information

Largest R.A value: high(R.A)
Smallest R.A value: low(R.A)
|Q] = [|R] - (high(R.A) — »)/ (high(R.A) — low(R.A))]
* Additional assumption: uniform spread
In practice: sometimes the second highest and lowest are used
instead

® The highest and the lowest are often used by inexperienced database
designer to represent invalid values!

10

Two-way equi-join

< Q: R4, B) > 8(B, C)

< Additional assumption: containment of value sets

= Every row in the “smaller” table (one with fewer distinct
values for the join column) joins with some row in the
other table

® Thatis, if |7, R| < |75 S| thenmz R Cmy S

= Certainly not true in general

Q| = T |R] - [S|/max(|my R|, |7y S|)]

= Selectivity factor of R.B = S.B is
1/max(| 7z R, |75 S])

3
o

>

Multi-table equi-join

<+ Q: R(A, B)><1 8B, C) > T(C, D)

< What is the number of distinct C values in the join
of R and §?

< Additional assumption: preservation of value sets

= A non-join attribute does not lose values from its set of
possible values

® That is, if A is in R but not §, then m, (R><S) = 7, R

= Certainly not true in general

Multi-table equi-join (cont’d)

<+ Q: R(A, B)><1 8B, C) > T(C, D)
% Start with the product of relation sizes
= [R]-|s]-|T]
< Reduce the total size by the selectivity factor of each
join predicate
" R.B =8.B: 1/max(|mz R|, |7 S]|)
*$.C=T.C: 1/ max(|m S|, |7 T|)
= ol =TR[] [T]/
(max(|mz R|, |75 S]) - max(| 7. S|, |7 T|)]

Recap: cost estimation with simple stats

< Using similar ideas, we can estimate the size of projection,
duplicate elimination, union, difference, aggregation (with
grouping)
% Lots of assumptions and very rough estimation
® Accurate estimate is not needed
= Maybe okay if we overestimate or underestimate consistently
® May lead to very nasty optimizer “hints”
SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
< Next: better estimation using more information
(histograms)

Histograms

< Motivation
= |R|, |7, R|, high(R.A), low(R.A)
* Too little information
= Actual distribution of R.A: (v, /), @5, f5), .-, @, 1)

® f; is frequency of v;, or the number of times v, appears as R.A

>

® Too much information
% Anything in between?
= Partition the domain of R.A into buckets

® Store a small summary of the distribution within each
bucket

= Number of buckets is the “knob” that controls the
resolution

Equi-width histogram

27
19
9
A, 13
6
5 4 q
p— |'| 33|‘|32
Lo B 1| 101
1 234567 8 910111213141516

+ Divide the domain into B buckets of equal width

% Store the bucket boundaries and the sum of
frequencies of the values within each bucket

Construction and maintenance

< Construction
= If high(R.A) and low(R.A) are known, use one pass over R to
construct an accurate equi-width histogram
* Keep a running count for each bucket
= If scanning is unacceptable, use sampling

¢ Construct a histogram on R and scale frequencies by |R|/|R

sample> sample |
< Maintenance
= Incremental maintenance: for each update on R,
increment/decrement the corresponding bucket frequencies

= Periodical recomputation: because distribution changes slowly

Using an equi-width histogram

*Q:0,_5R

5 is in bucket {5, 81 (with 19 rows)

Assume uniform distribution within the bucket

0] = 19/4~>5 (]Q| = 1, actually)

EX
QO

(04> 7mda<i6 R

{7, 16} covers [9, 121 (27) and {13, 16} (13)

{7, 16} partially covers {5, 81 (19)

|0] ~19/2 + 27 + 13 ~ 50 (|0 = 52, actually)
1 R(A, B)>8(B, C)

Consider only joining buckets in histograms for R.B and §.B

kS
O a a

Rows in other buckets do not join

Within the joining buckets, use simple rules

Equi-height histogram

16 16 16 16

6

T

34567 8 910111213141516

1
IL
1

N =

< Divide the domain into B buckets with roughly the same
number of rows in each bucket

< Store this number and the bucket boundaries

= Intuition: high frequencies are more important than low
frequencies

Construction and maintenance

+ Construction
= Sort all R.A values, and then take equally spaced splits
® Example: 122347891010101011 1112121416 ...
= Sampling also works
% Maintenance
= Incremental maintenance

® Merge adjacent buckets with small counts

* Split any bucket with a large count
— Select the median value to split

— Need a sample of the values within this bucket to work well

= Periodic recomputation also works

20

Using an equi-height histogram

*Q:0,_sR

= 5 is in bucket {1, 71 (16)

= Assume uniform distribution within the bucket

" Q| ~16/7~2 (|Q] =1, actually)
#0105 7maa<ic R

= {7, 16] covers {8, 91, {10, 11}, {12, 16} (all with 16)

= [7, 16} partially covers {1, 71 (16)

" Q| ~16/74+ 16+ 16 + 16~ 50

(|0 = 52, actually)

+ Join similar to equi-width histogram

Histogram tricks

< Store the number of distinct values in each bucket

= To remove the effects of the values with 0 frequency

* These values tend to cause underestimation

= Assume uniform spread (the difference between this value and the
next value with non-zero frequency)

< Compressed histogram

= Store (v, f;) pairs explicitly if /; is high

= For other values, use an equi-width or equi-height histogram
% Self-tuning

= Analyze feedback from query execution engine to refine
histograms

= Aboulnaga and Chaudhuri, SIGMOD 1999

22

More histograms

<= More in Poosala et al., SIGMOD 1996
< V-optimal(V/, F) histogram
= Avoid putting very different frequencies into the same bucket

® Partition in a way to minimize >, VAR, overall, where VAR, is the
frequency variance within bucket 7

< MaxDIiff(V/, A) histogram

® Define area to be the product of the frequency of a value and its
spread

= Insert bucket boundaries where two adjacent areas differ by large
amounts

= A bit easier to construct than V-optimal; comparable performance

Wavelets

< Mathematical tool for hierarchical decomposition of
functions and signals

< Haar wavelets: recursive pair-wise averaging and
differencing at different resolutions

= Simplest wavelet basis, easy to implement

Resolution Averages Detail coefficients
3 {2,2,0,2,3,5,4, 4}
2 2, 1, 4, 41 {0, -1, -1, O}
1 {1.5, 41 {0.5, 0}
0 [12.751 [-1.25}

Haar wavelet decomposition: {2.75, —1.25, 0.5, 0, 0, -1, -1, 0}

Haar wavelet coefficients

< Hierarchical decomposition structure

——
Original data

Wavelet-based histogram

% Idea: use a compact subset of wavelet coefficients to
approximate the data distribution

= Matias et al., SIGMOD 1998

= Transform the distribution function which maps v, to f;
% Steps

= Compute cumulative data distribution function C(»)

® C(v) is the number of tuples with R.A < v
= Compute wavelet transform of C

= Coefficient thresholding: keep only the coefficients that
are largest in absolute normalized value
* For Haar wavelets, divide coefficients at resolution ; by 2 /2

26

Using a wavelet-based histogram

‘:’Q: UA >z¢andA§1/R
Q| = Cw) - Cw)

% Search the tree to reconstruct C(v) and C(x)

2
o

= Worst case: two paths, O(log N), where N is the size of
the domain

= If we just store B coefficients, it becomes O(B), but
answers are nOw approximate

< What about Q: 0, _, R?

N
§

Summary of histograms

< Wavelet-based histograms are shown to work better
than traditional bucket-based histograms

% The trick of using cumulative distribution for range
query estimation also works for bucket-based
histograms

< Trade-off: better accuracy <+ bigger size, and higher
construction and maintenance costs

