

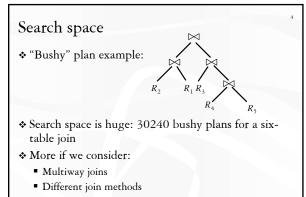
Announcements (April 21)

- ✤ Homework #4 due next Thursday
- ✤ Classes on both Tuesday and Thursday next week
- Project demo period: April 28 May 1
 - Remember to email me to sign up for a 30-minute slot
- Final exam on Monday, May 2, 2-5pm
 - 3 hours—no time pressure!
 - Open book, open notes
 - Comprehensive, but with emphasis on the second half of the course and materials exercised in homework

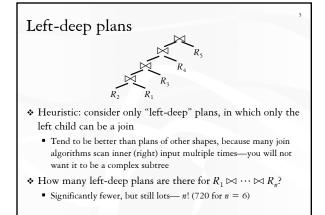
Review of the bigger picture

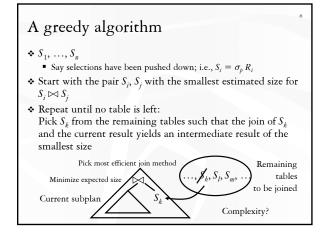
Query optimization

- * Consider a space of possible plans
- * Estimate costs of plans in the search space
- ♦ Search through the space for the "best" plan (today)
- The Focus on select-project-join query blocks
 - Join ordering is the most important subproblem



Placement of selection and projection operators





Query optimization in System R

- * A.k.a. Selinger-style query optimization
 - The classic paper on query optimization (Selinger et al., *SIGMOD* 1979)
- ✤ Basic ideas
 - Left-deep trees only
 - Bottom-up generation of plans using dynamic programming
 - "Interesting orders"

Bottom-up plan generation

- Observation 1: Once we have joined k tables together, the method of joining this result further with another table is independent of the previous join methods
- Observation 2: Any subplan of an optimal plan must also be optimal (otherwise we could replace the subplan to get a better overall plan)
- The Not exactly accurate (next slide)
- Bottom-up generation of optimal left-deep plans
 Compute the optimal plans for joining k tables together
 Suboptimal plans are pruned
 - From these plans, derive optimal plans for joining k+1 tables

The need for "interesting order"

- ***** Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- * Best plan for $R \bowtie S$: nested-loop join (beats sort-merge)
- * Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- ♦ Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

* When picking the best plan

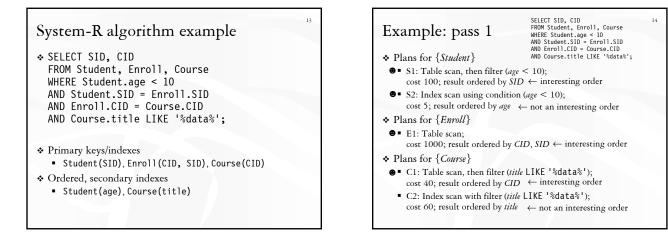
- Comparing their costs is not enough
 Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

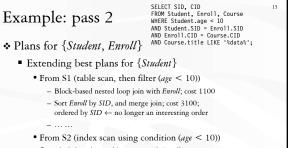
System-R algorithm

- Pass 1: Find the best single-table plans
- Pass 2: Find the best two-table plans by considering each single-table plan (from Pass 1) as the outer input and every other table as the inner input
- ✤ Pass k: Find the best k-table plans by considering each (k−1)-table plan (from Pass k−1) as the outer input and every other table as the inner input
- * Heuristics
 - Push selections and projections down
 - Process cross products at the end

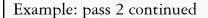
Reasoning about predicates

- \Leftrightarrow SELECT \ast FROM R, S, T
 - WHERE R.A = S.A AND S.A = T.A;
- * Looks like a cross product between R and T
 - No join condition
- * But there is really a join between R and T
 - R.A = T.A is implied from the other two predicates
- A good optimizer should be able to detect this case and consider the possibility of joining R with T first





- Block-based nested loop join with *Enroll*; cost 1005
- Extending best plans for {Enroll}



- ♦ Plans for {Student, Course}
- Ignore; it is a cross product
- SELECT SID, CID FROM Student, Enroll, Course WHERE Student.age < 10 AND Student.SID = Enroll.SID AND Enroll.CID = Course.CID AND Course.title LIKE '%data%';
- ✤ Plans for {*Enroll*, *Course*}

-

- Extending best plans for {Course}
 - From C1 (table scan, then filter (title LIKE '%data%'))
 Merge join; cost 1040
- Extending best plans for {Enroll}

Example: pass 3

SELECT SID, CID FROM Student, Enroll, Course WHERE Student.age < 10 AND Student.SID = Enroll.SID AND Enroll.CID = Course.CID AND Course.title LIKE '%data%';

- ✤ Finally, plans for {Student, Enroll, Course}
 - Extending best plans for {Student, Enroll}
 - • (INDEX-SCAN(Student) NLJ Enroll) NLJ FILTER(Course); cost ...
 -
 - Extending best plans for {Student, Course}
 None!
 - Extending best plans for {Enroll, Course}
 (FILTER(Course) SMJ Enroll) NLJ (INDEX-SCAN(Student)); cost ...

•

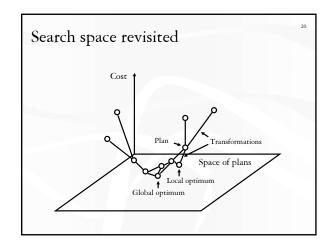
- Considering bushy plans Straightforward generalization: Store all optimal 1-table, 2-table, ..., and *k*-table plans
- To find the optimal plan for k+1 tables
 - For every possible partition of these tables into two groups, find the best ways of joining the optimal plans for the two groups
 - Store the overall optimal plans

Optimizer "blow-up"

A 20-way join will easily choke an optimizer using the System-R algorithm

Solutions

- Heuristics-based query optimization
- Randomized query optimization (Ioannidis & Kang, SIGMOD 1990)
- Genetic programming (PostgreSQL)



Transformations

Relational algebra equivalences (or query rewrite rules in general):

- ♦ Join method choice: $R \bowtie_{method_1} S \rightarrow R \bowtie_{method_2} S$
- ♦ Join commutativity: $R \bowtie S \rightarrow S \bowtie R$
- ♦ Join associativity: $(R \bowtie S) \bowtie T \rightarrow R \bowtie (S \bowtie T)$
- ♦ Left join exchange: $(R \bowtie S) \bowtie T \rightarrow R \bowtie (T \bowtie S)$
- ♦ Right join exchange: $R \bowtie (S \bowtie T) \rightarrow S \bowtie (R \bowtie T)$
- ☞ Why the last two redundant rules?
 - "Shortcuts" to avoid using the join commutativity rule, which does not change the cost of certain joins (example?)—creating plateaus in the plan space

Iterative improvement

Repeat until some stopping condition (e.g., time runs out): 22

24

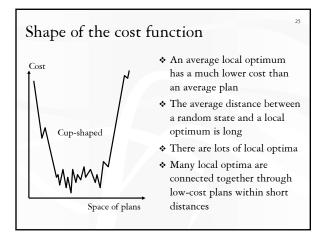
- Start with a random plan
- Repeatedly go downhill (i.e., pick a neighbor with a lower cost randomly) to get to a local optimum
- * Return the smallest local optimum found

23

- Two-phase optimization
- Phase I: run iterative improvement for a while to find a good local optimum
- Phase II: run simulated annealing with a low initial temperature to get more improvements
- Why does this heuristic tend to work better than both iterative improvement and simulated annealing?

Simulated annealing

- * Start with a plan and an initial temperature
- * Repeat until temperature is 0:
 - Repeat until some equilibrium (e.g., a fixed number of iterations):
 - Move to a random neighbor of the plan (an uphill move is allowed with probability $e^{-\Delta cost/temperature}$)
 - Larger \rightarrow smaller probability
 - Lower temperature \rightarrow smaller probability
 - Reduce temperature
- * Return the plan visited with the lowest cost



Comparison of randomized algorithms

Iterative improvement

- Too easily trapped in a local optimum
- Too much work to restart
- * Simulated annealing
 - Too much time spent on high-cost plans

✤ Two-phase

- Phase I uses iterative improvement to get to the cup bottom quickly
- Phase II uses simulated annealing to explore the cup bottom further