A Short Tutorial on Using Expectation-Maximization with Mixture Models

Jason D. M. Rennie jrennie@csail.mit.edu

March 3, 2004

Abstract

We show how to derive the Expectation-Mazimization (EM) algorithm for mixture models. In a general setting, we show how to obtain a lower bound on the observed data likelihood that is easier to optimize. For a simple mixture example, we solve the update equations and give a "canned" algorithm.

1 EM for Mixture Models

Consider a probability model with unobserved data, $p(x, y|\theta)$, where x represents observed variables and y represents unobserved variables. Expectation-Maximization (EM) is an algorithm to find a local maximum of the likelihood of the observed data. It proceeds in rounds. Each round, parameters are chosen to maximize a lower-bound on the likelihood. The lower-bound is then updated so as to be tight for the the new parameter setting.

Let $\theta^{(t)}$ be the current parameter setting. The log-likelihood of the observed data is

$$l(\theta^{(t)}) = \sum_{i} \log p(x_i | \theta^{(t)}) = \sum_{i} \log \sum_{y} p(x_i, y | \theta^{(t)}).$$
(1)

We want to find a new parameter setting, $\theta^{(t+1)}$, that increases the log-likelihood of the observed data. In other words, we want to maximize the difference between the original log-likelihood and the new log-likelihood:

$$\theta^{(t+1)} = \arg\max_{\theta} l(\theta) - l(\theta^{(t)}).$$
⁽²⁾

Let $Q(\theta, \theta^{(t)}) = l(\theta) - l(\theta^{(t)})$. Note that $p(y|x_i, \theta^{(t)}) = \frac{p(x_i, y|\theta^{(t)})}{\sum_{y'} p(x_i, y'|\theta^{(t)})}$. Consider

the following manipulations which result in a lower bound on Q:

$$Q(\theta, \theta^{(t)}) = \sum_{i} \log \frac{\sum_{y} p(x_i, y|\theta)}{\sum_{y'} p(x_i, y'|\theta^{(t)})}$$
(3)

$$=\sum_{i}\log\sum_{y}\frac{p(x_{i},y|\theta^{(t)})}{\sum_{y'}p(x_{i},y'|\theta^{(t)})}\frac{p(x_{i},y|\theta)}{p(x_{i},y|\theta^{(t)})}$$
(4)

$$=\sum_{i}\log\sum_{y}p(y|x_{i},\theta^{(t)})\frac{p(x_{i},y|\theta)}{p(x_{i},y|\theta^{(t)})}$$
(5)

$$=\sum_{i} \log E_{p(y|x_{i},\theta^{(t)})} \left[\frac{p(x_{i},y|\theta)}{p(x_{i},y|\theta^{(t)})} \right]$$
(6)

$$\geq \sum_{i} E_{p(y|x_{i},\theta^{(t)})} \left[\log \frac{p(x_{i},y|\theta)}{p(x_{i},y|\theta^{(t)})} \right]$$
(7)

$$= \sum_{i} \sum_{y} p(y|x_{i}, \theta^{(t)}) \log \frac{p(x_{i}, y|\theta)}{p(x_{i}, y|\theta^{(t)})} = L(\theta, \theta^{(t)}).$$
(8)

The inequality is a direct result of the concavity of the log function (Jensen's inequality). Call the lower bound $L(\theta, \theta^{(t)})$.

Consider the following (trivial) fact for two arbitrary functions, f and g. Let $x^* = \arg \max_x f(x)$. If f(x) is a lower bound on g(x) (i.e. $f(x) \leq g(x) \forall x$), and for some \overline{x} , $f(\overline{x}) = g(\overline{x})$, then if $f(x^*) > f(\overline{x})$, then $g(x^*) > g(\overline{x})$. In other words, if moving from \overline{x} to x^* provides an improvement in f, then it also provides an improvement in g. We have constructed L as a lower bound on Q such that $L(\theta^{(t)}, \theta^{(t)}) = Q(\theta^{(t)}, \theta^{(t)})$. Thus, if $L(\theta, \theta^{(t)}) > L(\theta^{(t)}, \theta^{(t)})$, then $Q(\theta, \theta^{(t)}) > Q(\theta^{(t)}, \theta^{(t)})$.

Note that maximizing $L(\theta, \theta^{(t)})$ with respect to θ does not involve the denominator of the log term. In other words, the parameter setting that maximizes L is

$$\theta^{(t+1)} = \arg\max_{\theta} \sum_{i} \sum_{y} p(y|x_i, \theta^{(t)}) \log p(x_i, y|\theta).$$
(9)

It is often easier to maximize $L(\theta, \theta^{(t)})$ (with respect to θ) than it is to maximize $Q(\theta, \theta^{(t)})$ (with respect to θ). For example, if $p(x_i, y|\theta)$ is an exponential distribution, $L(\theta, \theta^{(t)})$ is a convex function of θ . For some models, we can solve for the parameters directly, such as in the example discussed in the next section.

[1] is the original Expectation-Maximization paper. [2] discuss the convergence properties and suggest a hybrid algorithm that switches between EM and Conjugate Gradients based on an estimate of the "missing information."

2 A Simple Mixture Example

Consider a two-component mixture model where the observations are sequences of heads and tails. The unobserved variable takes on one of two values, $y \in$

{1,2}. Three parameters define the joint distribution, $\theta = \{\lambda_1, \phi_1, \phi_2\}$. λ_1 is the probability of using component #1 to generate the observations. ϕ_1 is the probability of heads for component #1; ϕ_2 is the probability of heads for component #2. We define $\lambda_2 = 1 - \lambda_1$ for convenience. Let n_i be the length of observed sequence i; let h_i be the number of heads. The joint likelihood is

$$p(x_i, y|\theta) = \lambda_y \phi_y^{h_i} (1 - \phi_y)^{(n_i - h_i)}.$$
(10)

To maximize the observed data likelihood, we start from an initial setting of the parameters, $\theta^{(0)}$, and iteratively maximize the lower bound. Let

$$J(\theta, \theta^{(t)}) = \sum_{i} \sum_{y} p(y|x_i, \theta^{(t)}) \log p(x_i, y|\theta)$$
(11)

$$= \sum_{i} \sum_{y} p(y|x_i, \theta^{(t)}) \log \lambda_y \phi_y^{h_i} (1 - \phi_y)^{(n_i - h_i)}$$
(12)

Due to the structure of the function, we can solve for the optimal parameter settings by simply setting the partial derivatives to zero. Let $p_{1i} = p(y = 1|x_i, \theta^{(t)})$, $p_{2i} = p(y = 2|x_i, \theta^{(t)})$. The partial derivative of J with respect to λ_1 is

$$\frac{\partial J}{\partial \lambda_1} = \frac{\sum_i (p_{1i} - \lambda_1)}{\lambda_1 (1 - \lambda_1)} \tag{13}$$

Thus, the maximizing setting of λ_1 is $\lambda_1^* = \frac{1}{m} \sum_{i=1}^m p_{1i}$. The partial of J wrt ϕ_1 is

$$\frac{\partial J}{\partial \phi_1} = \frac{\sum_i p_{1i} h_i - \phi_1 \sum_i p_{1i} n_i}{\phi_1 (1 - \phi_1)}$$
(14)

Thus, the maximizing setting of ϕ_1 is $\phi_1^* = \frac{\sum_i p_{1i}h_i}{\sum_i p_{1i}n_i}$. Similarly, the maximizing setting of ϕ_2 is $\phi_2^* = \frac{\sum_i p_{2i}h_i}{\sum_i p_{2i}n_i}$. We set $\theta^{(t+1)} = (\lambda_1^*, \phi_1^*, \phi_2^*)$ and repeat. Figure 1 gives a concise summary of the implementation of EM for this example.

The "canned" algorithms given in [3] (Appendix B) provide useful criteria for determining convergence.

References

- A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society series B*, 39:1–38, 1977.
- [2] Ruslan Salakhutdinov, Sam Rowies, and Zoubin Ghahramani. Optimization with EM and expectation-conjugate-gradient. In Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), 2003.
- [3] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. http://www.cs.cmu.edu/~jrs/jrspapers.html, 1994.

- Randomly choose an initial parameter setting, $\theta^{(0)}$.
- Let t = 0. Repeat until convergence.

$$\begin{aligned} - & \text{Let } (\lambda_1, \phi_1, \phi_2) := \theta^{(t)}, \, \lambda_2 := 1 - \lambda_1. \\ - & \text{Let } p_{yi} := \frac{\lambda_y \phi_y^{h_i} (1 - \phi_y)^{(n_i - h_i)}}{\sum_{y'} \lambda_{y'} \phi_{y'}^{h_i} (1 - \phi_{y'})^{(n_i - h_i)}} \text{ for } y \in \{1, 2\}, \, i \in \{1, \dots, m\}. \\ - & \text{Let } \lambda_1^* := \frac{1}{m} \sum_{i=1}^m p_{1i} \\ - & \text{Let } \phi_1^* := \frac{\sum_i p_{1i} h_i}{\sum_i p_{1i} n_i}. \\ - & \text{Let } \phi_2^* := \frac{\sum_i p_{2i} h_i}{\sum_i p_{2i} n_i}. \\ - & \text{Let } \theta^{(t+1)} := (\lambda_1^*, \phi_1^*, \phi_2^*). \\ - & \text{Let } t := t + 1. \end{aligned}$$

Figure 1: A summary of using the EM algorithm for the simple mixture example.