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ABSTRACT. In the past, picture segmentation has been performed by merging small primitive regions
or by recursively splitting the whole picture. This paper combines the two approaches with signifi-
cant increase in processing speed while maintaining small memory requirements. The data structure
is described in detail and examples of implementations are given.
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1. Introduction

An important problem in picture processing, pattern recognition, and scene analysis is
the detection of objects from their background. For high contrast and noise iree pictures,
differentiation can be used successfully for edge detection and then objects can be identi-
fied by an edge following algorithm. However, such a simple process fails for noisy pictures
with fuzzy boundaries. This is also true when objects are defined by texture rather than
brightness level [1, 2]. The major difficulties are the nonuniformity in the brightness
level of objects (high frequency noise) and the loss of contrast (low frequency noise).
For a given class of picture, one could use a bandpass filter followed by a thresholding
operation. However, the design of these operators is nontrivial and may depend eritically
on the choice of parameters (e.g. the threshold level). This is particularly true for pic-
tures where one must identify many objects, each at a different brightness level. These
difficulties have led to the development of alternative techniques, which are usually of
one of the following two types.

(1) Direct region detection. The algorithm of Brice and Fennema [2, 3] and subsequent
extensions of it [4] are typical of this kind. Picture elements (pixels) are merged se-
quentially to form bigger regions on the basis of global considerations.

(2) Extended edge detection. The algorithms of Rosenfeld and Thurston {5, 6], Mar-
telli [7], and Hueckel [8] are examples of this approach. A more complex scheme of dif-
ferentiation is used in combination with edge following.

In both cases semantic information can be used to improve the results {9, 10}.

A generalization of approaches of the first type can be made in terms of functional
approximation. If f(z, y) is the brightness function of a picture defined on a domain D,
then we may attempt to divide D into the minimum number of regions where f(z, y)
satisfies certain constraints (e.g. is approximately constant). Preliminary work has
given encouraging results {11] in the sense that one can obtain large regions quickly
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F1e. 1. Illustration of the use of (a) piecewise constant approximations and (b) piecewise
linear approxunations for segmentation

without the use of semantics, which can be applied later. Two classes of algorithms have
been developed. In one, segmentation is first performed along raster lines which are
subsequently grouped into bigger regions (11, 12]. In the second, which is the subject
of this paper, a direct two-dimensional segmentation is attempted.

In Section 2 we discuss this scheme in the context of other region detection approaches.
A detailed comparison with some of the complex edge following schemes [5-8] will be
the subject of future work.

As a quick illustration of how functional approximation achieves segmentation, con-
sider the profile of a noisy picture shown in Figure 1. A piecewise constant approxima-
tion (a) or a piecewise linear approximation (b) with a variable breakpoint can be used
to detect the “edge” between the left part and the right part. The use of such approxi-
mations for shape description is not new (see [13, Vol. II, Fig. 10-4]), but it is only
recently that fast algorithms applicable to “irregular’ data have been developed [14-16].

The effect of such processing is to eliminate high frequency noise without ‘‘smearing”
boundaries (Figure 1 and also {15, Figs. 3-7]). If a piecewise constant approximation is
used then the resulting segmentation usually consists of a few large regions and a large
number of small regions corresponding to transition areas. If necessary, these can be
merged quickly by a small region elimination routine.

2. Region Detection Methods

Region detection methods can be divided into the following two types.

(1) Merging or bottom-up. The picture is divided into a large number of small regions
(possibly coinciding with single pixels) which are then merged to form larger regions.
The “phagocyte” algorithm of Brice and Fennema [3] is typical of this kind. Algorithms
which scan a waveform sequentially from left to right to determine the longest interval
such that an approximation is below a given tolerance [17] also belong to this class.
There have been a number of merging criteria for different types of primitive regions
which are discussed in the literature {1-3, 10, 11, 18-20).

(2) Splitting or top-down. The picture is successively divided into smaller and smaller
regions until certain criteria are satisfied. There were very few applications of this scheme
in picture processing until recently [21, 22], but it has been a well-known method for
polygonal approximation of boundaries (2].
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It is possible to devise a mixed split-and-merge scheme, and this has been carried out
in the case of waveforms and boundaries with encouraging results [16]. Extension of this
strategy is proposed here for pictures. The advantages are (1) an increase in computa-
tional speed, and (2) an additional degree of freedom allowing improvement in seg-
mentation quality, both without expanding memory requirements. Below is an abstract
formulation of the problem.

Let X be the domain of a picture (e.g. a square). Let f(z, y) be the brightness function
defined on X. A logical predicate P is defined on subsets S of X as follows:

true if there exists a constant a such that |f(z, ¥) — a| < e [see ftn. 1]
P(8S) = for all points (z, y) € 8,
false otherwise,
where e is a prescribed error tolerance.

A segmentation of X is a partition of X into subsets S,, ¢ = 1, - -, m, for some m

such that:

(&)'X = UT—I S. 3

(k) S.NS, = Fforallz = j,

(e) P(8.) = true for all 7,

(d) P(S.U 8,) = false for all ¢ # j,
pravided S; and S, are adjacent in X. Note that the number m is not unique, nor must
it be the mipimum under which conditions (a)~(d) hold [23]. In many practical cases,
however, imposing these conditions yields an m close to the minimum [16].

A merging scheme starts with a partition satisfying (c) and proceeds to fulfill (d); a
splitting scheme starts with a partition satisfying (d) and proceeds to fulfill (¢). A
split-and-merge procedure begins with an arbitrary partition satisfying neither condition
and produces a partition satisfying both.

The above formulation can be expressed in a graph theoretical framework by a tree
whose nodes correspond to the subjects of X such that

(i) X is the root of the tree;
{ii) the successors of the node corresponding to a subset S of X are the nodes cor-
responding to proper, disjoint, collectively exhaustive subsets of S; and

(iii) the leaves of the tree represent the smallest subsets of X under consideration
(e.g. single pixels).

Figure 2 shows an example of such a segmentation tree construction. It can be shown
that a segmentation corresponds to a node cutset which is the minimal set of nodes
separating the root from all the leaves. The root B may be separated from a leaf L in
one of three ways:

(i) R isin the cutset.
(ii) L is in the cutset.

(iii) There exists one and only one node N in the cutset such that R is an ancestor
of N and L is a descendent of N. This implies that there is no other cutset closer to the
root with nodes where P(S) is true. The terms top-down and bottom-up used before
gan be visualized in terms of moves along the segmentation tree and the corresponding
alterations on the original node cutset.

Another operation, known as sidewise merging or grouping [11), is accomplished either
by transforming the tree structure by combining leaves, or by partitioning the final cut-
set into region equivalence classes, based on node maxima and minima with respect to
the prescribed error tolerance as discussed earlier. Thus adjacent nodes with different
predecessors and belonging to different levels may be merged or grouped together to
form larger irregular subsets S (possibly ot genus greater than zero) provided P(S)
holds true. Figure 3 shows an example of grouping and the resulting modifications in
tree structure.

! Equivalent to [maxs (f(z, ¥)) — ming (f(z, ¥))] < 2e.
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Fic. 3. Illustration of the split-and-merge procedure

1t is obvious that this method can be generalized to other than piecewise constant
approximations by redefining the predicate P(S). For example, a segmentation by
texture can be achieved by replacing the condition | f(z, y) ~ a| < e with

f@y) = 5 T F(u,0)e™ "™ | < e,
u=() y=(
where m and n are small numbers and F(u, v) is the Fourier Transform ranked in order
of significant components.
For simplicity, all the discussion in this paper is limited to the piecewise constant
case. However, the algorithm is directly extendable to other criteria and all that is
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required is to replace the statements involved directly with the evaluation of P(S). Such
statements are flagged in the sequence with the $ sign. In particular, a comparison to 2¢
should be replaced by an evaluation of P(S), and the evaluation of maxima and minima
by whatever calculations are needed for finding an approximation.

The choice of the parameter e is obviously very important. In essence, 2e is the tol-
erated variation of brightness within a single region. Its exact value depends on the class
of pictures under consideration and, in particular, the brightness distribution over the
scene. Probably the easiest way to estimate it is to try a few different values on a typical
sample and then choose the one giving the best results. In general, the precise value is
not too important (in contrast, say, to the choice of threshold). Our experience has been
that e = 16 will give reasonable results for any pictures whose brightness varies from
0 to 127. For other ranges a proportionally scaled value should be used.

3. Compultational Considerations

In most practical applications the computational efforts involved in splitting and merg-
ing are not the same. Merging d subsets into a single set requires two groups of d com-
parisons (updating the maximum and minimum values of f(z, ¥) on the domain of the
subsets). On the other hand, splitting a single set into d subsets necessitates a reevalu-
ation of the maximum and minimum of f(z, y) on the domain of each of the d subsets.
Let

cost of merging {8S,, ---, Sg} into S, = C.,,

cost of splitting Sy into {S,, ---, Sg = C,.

Note that C. is independent of |So| but dependent on d (i.e. C,. = 2-d-48) while C, is
dependent on Sy} but independent of d (i.e. C, = 2-|8,|-5), where & is the cost of a
single comparison.

Jommon as the above model might be, there may be cases where a more symmetrical
situation exists, especially in uniform approximation by high order polynomials; also,
the dependence on size need not be linear [23].

The choice between a bottom-up or top-down procedure should depend on the level
of the tree at which the majority of the nodes in the cutset corresponding to the final
segmentation occurs. Asymptotically the top-down procedure is of order |X| logs |X]|
while the bottom-up is of order |X|, where d, as before, is also the node degree of the
tree. The difference in asymptotic behavior explains the popularity of bottom-up methods
in the literature as compared to top-down methods.

Theoretically and experimentally, savings in computation can be achieved if an inter-
mediate level of the tree is chosen as a starting cutset. Such a choice should attempt to
minimize the number of splits and merges needed to reach the final cutset, which usually
encompasses many levels (some nodes close to the root and others close to or coinciding
with leaves) due to the nonuniformity in the distribution of detail over a typical picture.
Figure 4(a) illustrates the computational effort yielded by applying the two methods.

SEGMENTATION TREES

b!
— 2 CUTSET CORRESPONDING ®
TO FINAL SEGMENTATION

*m = NUMBER OF MERGES

#s =NUMBER OF SPLITS
Fia. 4. Illustration of the computational economy achieved by the split-and-merge method
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If I, and l.. are such initial levels for top-down and bottom-up methods respectively, a
combined split-and-merge procedure, starting at a middle level , such that l. < I, < I, ,
can move in both directions with an overall economy as a result. Figure 4(b) illustrates
the smaller computational effort associated with a split-and-merge approach. That this is
indeed the case has been verified for waveforms and boundaries [16, 23], and holds true
for the picture examples presented in this paper.

For a given class of pictures a certain distribution of the number and sizes of regions is
expected. This should determine the choice of the starting level, i.e. one where the block
size is near the average expected size.

4. Implementation of Split-and-Merge

In order to process an N XN picture P (where N = 2"%), the concepts of “segmentation
tree’” and ‘“node cutset” can be utilized. The segmentation tree is implemented as follows.
Each node corresponds to a square picture region segment (block). Leaves of the tree
are one-by-one blocks (i.e. single pixels) at level logesN = Iy, and all other nodes are
defined recursively. A level Inode b (where 0 < I < ly) which is located (taken to mean
the index of the upper left corner pixel of the corresponding block) at (z, y) has sides
of length z = N/2' and has four successors with sides of length z/2 located at (z, y),
(z + 2/2, ), (2, y + 2/2), and (z + 2/2, y + 2/2). Note that the above definition
has the root node (level 0) located at (1, 1). This is, of course, the complete picture
with sides of length N. Aside from specifying (2, yx) and z; , each node b; has associated
values M; and m; equal to the maximum and minimum of the brightness function f(z, y)
on the corresponding block.

Rather than storing the complete tree in memory (necessitating 5 2, 4" = 5(4N”
— 1)/3 integers), only the cutset is stored as 5 arrays (zi, ¥k, 2 , Mk, mz) of size N°.
This is achieved by a suitable encoding for the position of b, in the array given (i , yz)
which enables us to retrieve the tree structure, i.e. subsets of four nodes and their common
predecessor. Initialization of the array at level I, with size of the block sides s, = N/2'
is performed as follows:

ke 0;
DOz =1TON BY s ;
DOj=1TONBY s ;

ke—k+41;zee 4 yr—3; 2 S0

MI;‘—‘MAX(P.., =T, v, Tkt 80,0 =Yk, e ;yk+30); $
me+~ MIN(p,, :? =2k, -, Tk + 8,7 =Y, *, Y + 8); $
END;

END,

Note that k contains the value ¢, = 4% after the initialization step (the number of nodes
in the initial cutset).
Now nodes by , biz, bis, bie have a common predecessor by located at (o, Yio) if:

k1l = 2% [(zo — 1) + 2%y — DI/N + 1,
k2 = k1 + 2°7%, k3 = k1 4+ 227', k4 = k3 4 27,

for a given level I (where 0 < [ < ). Figure 5 illustrates the relationship between the
five nodes and represents some of the associated variables.

Merging nodes bi, bia, bis, bis is & process that removes the four nodes from the
cutset and replaces them with node by (actually b updated). In the following listing,
s denotes the size of the block sides.

le— lo ; 8¢ 80,
DO WHILE ! > 0;
DO FOR ALL by € level I;
IF 2z = 212 = 2z = 2z = s THEN DO,
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F1c. 5. Illustration of some parameters involved in the splitting or merging of a node

¢ — MAX (Mu, Mys, Mis, Myy);
h — MIN (mp, mis, Mus, mad);
IF ¢ — k < 2¢ THEN DO;
Zrs <= 0; 2x3 «— 0; zpe < 0;
2x = 28; My — g; mup — b;
END;
END;
END;
le=l—1; 8 2s;
END;

{see ftn. 2]

¥ e

The cutset still has ¢, nodes, but merged nodes either have been updated or have had

z set to zero.
Splitting a node by, (actually by before updating) is a process that removes the node

from the cutset and replaces it with nodes by, bia , bis , bis .

€& Cp;
DO X =1TOg;
IF 0 < zi < s THEN DO;
le—ly; s 8;
DOWHILE ! < Iy ;
IF M;; ~ mu > 2¢ THEN DO; $ [see ftn. 2]
kre—c+ 1l kse—~c+2; ki—c+3;
2k = 8/25 Zke = Za1 § Zis — 2 5 Bk 2R ;
Tha ¢~ Tr1 ;) Ths ¢~ Th + Zh1 3 The <~ Ths ;
Yie <= Yrr + 2r1; Yrs ¢ Yu1 5 Yre <= Y2 s
My, -+, Mxiand my; , -+ , mia are calculated $
using values of p,,, as demonstrated previously],
le—l+4+1¢ce—c+3
END;
ELSE ! « Ily;
END;
END;
END;

This yields the final cutset satisfying properties (a)—(d) in Section 2.

1t is easy to see that both processes terminate. Merging can proceed until the cutset
consists solely of the root node (e.g. a one-color picture), and splitting can proceed until
the cutset consists of the 4% = N?leaf nodes only (e.g. an alternating two-color picture).
Furthermore, the two processes are mutually exclusive (i.e. all of the merging operations
are followed by all of the splitting operations without violating final cutset properties),
since once four nodes have been merged they cannot be split. Also, nodes that have been
split cannot be merged back to their original configuration, although merging with other
adjacent nodes is possible through grouping, which is the third step in the processing
sequence.

? As defined in Section 2; see ftn. 1.



Picture Segmentation by a Tree Traversal Algorithm 375

5. Implementation of Grouping

The split-and-merge step is followed by a grouping procedure in order to remove ““arbi-
trary’’ region boundaries imposed by the “arbitrary’” segmentation inherent in the data
structure. For example, a natural region which was partitioned originally into two
different blocks that are never merged will stay partitioned among the successors of
these blocks in the tree. Grouping abandons the tree structure and examines adjacent
unrelated blocks found in the final cutset. Block adjacency is obtained from a matrix 4
initialized as follows:

DOk = 1TO ¢ SUCH THAT z; = 0;
DO 1 = 7: TO z; + 8&;
DOj =y TO yx + 8x;
Guy +— k;
END;
END;
END;

Thus if a point p,,, in the picture is a member of the block specified by node b, , the
corresponding entry @.,, in the adjacency matrix contains k. Grouping is then executed
by a labeling algorithm [24]. A block is either unlabeled and unscanned (z; > 0) or
labeled and unseanned (z; < 0 and b, is on the stack S), or labeled and seanned (z; < 0
and b is not on the stack S). Nodes that are labeled during the nth application of the
algorithm are placed consecutively on the nth region list R, . Also the kth block b, has
the value of a new associated variable r, set to the region number »n to which it is as-
signed:

S « empty; n « 0;
DOk =1TOg¢
IF z > 0 THEN DO;
2x +~ — 2z 3 PUSH(b) — S; u «— My; v «— my;
n «— n + 1, size, « 0; sum, « 0;
DO WHILE S— empty;
POP (b,) « S; PUSH(®},) —» Bp; 1. «— m;
size, « 8ize, + 2.2
DOa=2TO0z, —2 — 1,
POB=4y4TO0y ~—2 -1
SUM, « SUM; + pa.s;
END;
END;
DO FOR ALL b, € 4 SUCH THAT b, @ b.; {see ftn. 3]
g« MAX(u, M,); k. — MIN (v, m,);
IF g — h < 2¢ THEN DO;
PUSH(b,) > 8; ug; v h;
END;
END;
END;
END;
END;

[see ftn. 4]

o wn

Note that n contains the final number of regions, size, contains the number of pixels,
and sum,/size, is the average brightness level of the region specified by R, . Figure 6
shows an example of the grouping procedure outlined above. The resulting partitioning
of the cutset into equivalence classes determining the tree structure transformations is
obviously a segmentation satisfying properties (a)—(d) in Section 3.

It should be pointed out that the results of the grouping process are order dependent,
since when a block is added to a region the maximum and the minimum of the bright-
ness in that region are updated. This is, of course, a common feature of all techniques

3@ = *“is adjacent to.”
4 ¢ is as defined in Section 2 (ftn. 2).
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Fi1e. 6. Tlustration of the grouping procedure on a representative picture section with
corresponding adjacency matrix

which update the features of a region once new points are added to it. In practice, such
order dependence does not ereate any serious problems (see examples).

After grouping, the picture has been divided into regions where the brightness level
remains within the limits specified in Section 3 and adhered to in Section 4. However,
such a partition still does not correspond necessarily to a normal visual impression of
the picture. There are two reasons for this, both causing the presence of many more
regions than “seen.” The first is the existence of narrow transition zones between large
regions. These zones are not perceived visually as separate entities; instead they are
made components of the “real” regions. Second is the existence of high frequency noise.
These artifacts are not eliminated by the original approximation using the minimum and
maximum brightness level criterion of Section 3. Both problems are well known and
usually have been treated on the basis of semantic information {3, 9, 10]. Strong and
Rosenfeld have presented a detailed discussion of this problem [25).

In practice, most of these “odd” regions are of very small size (quite often single pixels).
This bimodal size distribution [12] suggests that significant improvements can be achieved
if small regions are eliminated by combining them with the ‘“nearest neighbor,” defined
to be the adjacent region with the smallest difference in average brightness. In addition,
regions with very similar average brightnesses are merged without regard to size. An
average value is used at this stage to overcome the constraints imposed by the minimax
value. Also, average brightness is in closer agreement with visual impression and results
in higher contrast. For a discussion of various error norms in this context, see [23].

In order to merge adjacent regions, a new data structure providing region adjacency
information is needed. By utilizing the relations present in the block adjacency matrix A,
the region lists R, and the block-region associations r, it is possible to create (in one pass)
a region adjacency graph whose nodes correspond to regions and whose branches repre-
sent the adjacency relationship. Let n be the number of regions and d = 3 -1 d, , where
d; is the number of regions adjacent to region ¢ (i.e. the degree of graph node 7). Since
d is much smaller than n in practice, the graph is sparse and should be represented in
adjacency list form requiring order nd storage rather than in other forms requiring order
7’ space [24]. The complete graph need not be stored in memory. Instead, each adjacency
list L is generated and accessed only once, thereby using at most max;{d,) locations.

The elimination algorithm proceeds as follows (€s.. is the largest region to be combined
and e, is the largest difference in average brightness to cause adjacent regions to be
merged ) :

DO i =1TOn;
IF size, > 0 THEN DO;
DO FOR ALL b: € R, ;
DO FOR ALL b; € A SUCH THAT b, @ bx;
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(i-1,)) ® ¢ 0 O
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Fia. 7. Elementary search direc- Fia. 8. Production of single-pixel-width
tions during boundary tracing boundaries

IF (r, % ¢ A r, ¢ L) THEN PUSH (r,) - L;
END;
END;
avg < MIN;¢|sum,/s1ze; — sum,/size,|,
m «— INDEX (MIN¢L|sum,;/s1ze; — sum,/size,|);
DO WHILE (size, < €q5 /\ 8V < €ayq)”
size, «— size, - 8izem;
sum, < sum, -+ SuMm;
R, « R,||Rn; [see ftn. 5]
sizem «— 0;
DO FOR ALL b; € Ry;
TR — 1;
DO FOR ALL b, € A SUCH THAT b, @ bs;
IF (r, £t A r, #m A r,¢ L) THEN PUSH (r,) — L;
END;
avg «— MIN¢r|sum;/size; — sum, /size,|;
m « INDEX (MINc.|sum;/size; — sum./size.|,
END;
END;
END;
END;

> & -

"

6. Boundary Extraction

One advantage of picture segmentation by direct partitioning into regions is that closed
boundaries are readily determined from the region description. This is in contrast to
region formation through edge detection, where extensive tracking is necessary, often
yielding contours which are not closed {5-8]. All that is necessary here is a list of regions
specified by their upper right-hand corners (z,, y.) and a matrix A such that if p,,
belongs to region k then a,,, = k.

Beginning with (z., y.), points in the boundary can be extracted by a simple tracing
procedure. Only four directions are searched (see Figure 7), thereby enabling a symmetric
boundary extension of one unit in two directions in order to avoid having boundaries of
two-pixel width (see Figure 8) [12]. This is preferable to the scheme introduced by Brice
and Fennema [3], which extends boundaries by § unit in 8 directions necessitating a new
matrix of 4N°.

As the extended boundaries are identified, points where three or four regions meet
can be found, also in linear time (see Figure 8). Once these picture “vertices” are de-
termined, the boundaries are easily partitioned and can be approximated by piecewise
polynomials for further data compaction or feature analysis {12, 16]. In the present im-
plementation a simple editing has been performed by replacing linear sections of bound-
aries by their endpoints. This reduces significantly the total number of points P’ needed
to specify the region boundaries.

8| = *“is concatenated with.”’
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7. Ezamples of Implementation

The algorithms described in the previous section were implemented on an IBM 360,/91
machine using the PL/1 optimizing and Fortran H compilers. Samples were 7-bit,
64X 64 pictures (0 < f(z, y) < 127, I. = 6, n’ = 4096). However the actual number
of gray levels could be smaller. In order to illustrate the generality of the method, a
number of dissimilar subjects were used: human faces, chest x-rays, landscapes, and
chromosome pictures. All were digitized using a TV eamera connected to an HP 2116
minicomputer. The results are shown in Figures 9-12. In each case, (a) is the original
produced by a line printer program [26], (b) is a CALCOMP plot of the boundaries,
and (c¢) is the gray level histogram. Vertices (where three or four regions meet) are
marked by little squares. On each original the listed parameters D and L indicate the
minimum and maximum of the gray scale used by the line printer program. In each case,
D and L were chosen near the extrema of the actual range of gray levels. The symbols
used for each level are shown beneath the histogram.

Table I summarizes the statistics of the processing operations. I, ¢, and e are as
defined in Section 3, e,y and e, are as defined in Section 5, and the rest of the symbols
have the following meanings:

M number of merge operations

S number of split operations

B number of nodes in the cutset after the split-and-merge step

R, number of regions after the grouping step

R, number of regions after the elimination step

P, P' number of extended boundary points before and after the compaction operation
described in Section 6
V number of vertices as defined in Section 6.

In one example the segmentation is rather simple (Figure 12) and one could achieve
comparable results by thresholding. However, the choice of the threshold value is non-
trivial [27], while the algorithms proposed require as input only error tolerances such as
€, €xvg , and €, . This can be chosen and remain invariant for large classes of pictures.

8. Discussion

A successful picture segmentation must take into account semantics. However, it is
desirable to reduce the amount of data before that step by a general scheme like the one
described in this paper. The examples of Section 7 show that one can go quite far in
obtaining reasonable segmentations without any significant semantic information. The
rather substantial programming effort for the efficient implementation of the initial
segmentation algorithm need not be repeated as the subject of interest changes. Only a
small number of parameters must be varied. The result is both data compaction and
organization. Algorithms of high computational complexity can be used afterward on
this reduced description.

TABLE 1. STATISTICS OF SEGMENTATION

Flg‘;;ﬁbject) I Jlo c0 e eavg l( esxze M S B R:L Rf P P! \Y T*
9 (face) 5 1024 | 16 l 18 ' 16 1641511985 1148 |13 1272|281 | 16 4.59
10 (X-Ray) 4 256| 16 | 16 16 34| 214217 | 49 |11 1008| 62 |19 1.45
11 (Scene) 5 1024 9 9 15 164139 (949186 | 13 1210|125 | 23 3.62
12 (Chrom.) 5 1024 | 12 12 | 16 2231] 805951115 6 800L192 4 3.12

*
picture processing time in seconds (* 10%) - dominated by I/O.



379

Picture Segmentation by a Tree Traversal Algorithm

*aurf aod your 1ad sjoquifs us) pue your sad sourf 1ySe syurad 19jurid oy esneoaq [eutSuo o) jo UOIHI09SIp ST 949Y) 59580 |[8 U] ,

s2In301d surzeSeuwr ¢ wouy paziNBip aow g (9)—(v) -6 o1y

(@ (%)

N9=K 0=5 0ZL=1 0L=G d ¥ 4

=

00S=]ISSSN

#3424 INS==2T 4 145S=
IBOBMN=+4===: +xN=220QSxe4 T4+ 412CS
.-anuou".‘:zawzmnuﬁ+o‘¢munuuv

.
H
BAOIS=05ns
&
s

EENKES
-

AES==T=4=OnBNBUASI+ITssx2I=10
§86=xIIz4I==xag

it 21
-
-

*
1 [ ] muomo¢»¢¢"Q'Hx:m-mmmum§u-umnun
N :06#00#00‘.I""*:mzcn¢¢m¢u»nnuu
BS+4 444445 =0SAAOST o449 Tannsll=
-znonuunununouuzmxnm¢¢ou~§uu.mnmr

Xe=i3= PIsT4=SABNS4=+4=94]2150C
PTi444S0BNT 4tz sayIsrznh

D D W

im'nuuo.¢ouu‘uoyamzuo¢¢mozmunanma

-ttootnnnmnNQ-uooum:num::n..::HNOm
.-NH:*rtoanwm‘o:ktm::-uz

Oald

.

b

B0+ -

1+

a4 d 3 1]

LA N0E 3

LS

(LTI U )

T T

S T R )




§. L. HOROWITZ AND T. PAVLIDIS

380

hm— cm—
a8

I

[N

oe.,

*(ponuinuo)) 6 "9Ig

®
6 8 L ge
tez=seasrenssI1T==SSSOOORNNNHNARNEEEEEH

.*i&i&d.d.*lll.llid&l.’lQ&I!I'.llldl.iiii!l’&’l..i.li.il..ﬁl!l&ld.ilﬂl
‘ldliﬁﬁliiiGi‘&i&d.&GI'I&.'..‘Q.Q‘.Qli.l’..iil.‘.ll'i!!!iﬂ.i&&il&’.ili

EEREXEEXAASIBBABBEE RSB XXX R B AN

..i.QIQQ.'.'.Iil!'iﬁliii’d%lﬁ!i&C&*IQ"

whkEEk &¥ I‘Qll&Gli0‘&.&6".'!.!.’!!.0‘!"‘!.ICG&I..Q XEISREE X & *
L 223 dbl&!.'.l‘ll!.l.’l.%l'i.i'.ﬁﬁil&l%&i'lll!l L2 3 * *
L2 L3 * AIRBIKRPRIRFNSERRRS R IR NRRSR XK PEXD
% 2 EEARSEE AR EBERNERANE & * ® %
% 2% & X ¥ ek » *
% %

BARRBRERBBRBRERRRRERSRER

t+4+4+2x#11I11=x=SSSSOOONNNRRN ANRNBBBOO0AAANAHHXAANNNNGHINIBEDD

ARSEREBIRRNBRBERRNBRREER SR AR ER NS

g g

AKHHREAXNNNGUGRUNBUB NN ERD

ARERRKABRR SRR R RS AR RN XK
AABRBEERERBERAP R AR RS K

K * * ¥ BEE EXEREE

» *

ARAEEAPBFERERRERRERKRRE RS XS
BEROREB IR AR AR R ERR SR RN
FSENRAERBRFREEREERN B AR K KRR K XK
PTI SRR 2 L R 2L L L b bhted
2 RS REREEREREKEEKARAR
1222332332 222 2 e

FxE R KRR R

R R RS R RE R

ERREKEREEEES
* EXFREEEE
EEEEEER
ERRRRE
B RN
* kk¥%
Ew
*%



Picture Segmentation by a Tree Traversal Algorithm 381

®)

ﬁjﬂ

]
=]
o
X
—8 =)
©
o
=~
ot
-]
3
3]
o=
=
]
)
o
>
]
B
X N ZO U (AN aonx P
K RER K ZEZNEOZOOZHN# LAt
EIERKNERETEDOO ) e w LIy b4
IR N TEBOEEZS ) || * b il Q
M A O 2 B O e e 4 OB A
0t D 0 M BB IS U I ) 2 e e ou S
WIOQERQWE X Ex 00 mE N AT O
BAZZOEXZ=2ZmD W 2 H b4 -~
- = = ! L Eb Rk d 5
K ~
DO * I \
EZa . o
S 30l RN
DQOOH* i 4 hd
Ot + i
[ U AT .
LI aN] =
RO + § ) vt
WY+ e
WMEN 41l e n
- HOH+ I 1e = 9
wx - 4. -4 =
Z %, H ITDCER i 5
om b AR -
nE - bt L [
LT} EXMERTRENDOKNRZBEZLENO )| | % it 4 1) 1 [ <
HN IO N Z 2000 0 X728 2 S i M S 3 b 0 00 1 1930 640 35 O ok bt . 13 000 96 ) [ 1
HEN® AN NEOZERKKEZOZEDE X ) o # -+ L2
H AU b i i B HONNHOZ % # IACH ++ 1l | + + .
QUNUIF I N S ® % F i+ N ) # % oo ll § ) 1 <
ZEN e ) O ) - ] -
VHE AR i ) % % 4 =
IS dainiel el 2] )
i A Ak 2 N RN R
* ) NN D+ ) QO
N0 0=z niln [ =g
O EDIDME h DX KHKKE X 4+ ‘1t ™
O 05 G AN W 0 e * 0l Voe s "
@ - o=zwn NN (=]
rm FIE] IEXEEP
o KD BT a
- T2 o0 bt .
e Lt MahA RN £
- *
LT - + .
v v
=
=
-
-
-
-
=
-
-
-
-

7 See footnote 6.



S. L. HOROWITZ AND T. PAVLIDIS

382

hm— omw oe—

LN

‘(panuyguo)) 01 “O14
®

teeciizezts s III==SSOONNHWRNEROOaAa HHE NN UNURNNY EE
sccrett 4+ 4k I IIT2==SSSSOOONNNRHARMAKBEEEOOO£X X AHRHRE RESUNUNERERNE BN

&.0‘&***iili&ii’&%i*l&*l&“illi&Iiil&li&*‘*&&ll*i&&i&!i{&ili&&l&*ll&*l{&iﬂl***'lbi.i&ll&i&&ill**l&*&&&Iﬁi&&&&&}ill&*!&**li'&l&&il
ll‘*l&l’!l&lfil}{i&&&l**li&&*&lilﬁi&liili#!l*lii*lii*d*i&&&&llil&&i“hi&id&&i&&i&*&iil**l&
L2 222 2] !&i‘&lil*iﬂ&QG'}&’G'il'&i‘li&l&ili&il&&%&&&%*l*i}l*I&%*li&.'!*&ﬂi*&&&&i&*&lb&i&
¥ Qlli.il*Qli*i**i&&ﬁlli&i*i&l&i&iiii&&l*’&ﬂll*%***iiﬂﬁ&&i*&llh&!&w&&*l*!l
&i&lli5!!%*&Ol&l&&llli"*il%i*l!!.&&{l&l*&&i**Qi*"&’.&‘ll&&&i&&{*l*&&&
* % *’Oﬁ!li&ll&&*ii&"l&i&&iii!billl*&*l“li&*i*l**i!’l!dﬁ&ihl&*i*&&&&&i
ERERFEE RN RRAARE Kk *&&l&‘&i&&il&&il&&**QI&&&**&&&&&&*&&*&*l&&*i

*hE

Ak REERARATRRERES R O T L L 1 D L L h bt th bt
ERRXEE £ REERR P N e Tt T L T L L L L L i bbb it

* * * ¥ XEXERE X K RO W A ORI K Ok KR O

* * * P L L T T I 2 L i bbbt

* % - AREERRE KRR R R R R KK

XAk R RRRERREEERERENEE

* FEEIEIITELEL S 2 22 2 2 1)

AR ERRE R KRR K XE
X AR EEEREERN
* 4ok ¥ koK Kk

KEEEEIER
Ak kR kK
R EREEE
*ERKEER
Ak k
* k%
=
*k

X R X RS



383

Picture Segmentation by a Tree Traversal Algorithm

@

)

s(911880) ainjord aepus(es wio1y pezIN3ip odsospuery (0)-(8) [ ‘014

=== ==#+SNSSSKI=IxI=
< «s 200SSTsI=IIx
WEISERTI 44 =TT e~
=SIl=+=nz=z=+T4+ex
“x=IIx+=lenz=es

u

(B2 55 S E A et
T4ISSEIHea==4e "

BRI 10 F 0 T e N
»

=+SS=3RUOTI +++==+ X
‘5= Huuv¢~¢vwalo.|nu:
+=8STIII= H.". i1

o ==II=]x= Hooa

ol N+
ol N+

e Il N+

(®)

n9=K 0=S OLL=7T 0€=0 4 H 4
RBUHOBEXWO++T08 XM
WREHOWONI: * zX
HEUWROEs B3
BB XHANO- NR
BUBBUHNN Ny

NXH N

MMg =N

Xeu =N

¥XE ==

AXX =S

Iun +1

+SHS=te==

MSHT “=-#+

XHBH= -=1x

H¥NZ: [-10

XUUNO: =x3

HEWA+NC=uY

AAPH=H¥=2

S+SH  XNwM

*®

.
'
COEHRONT ZTNE Y

RS
AN L]
WX
-

- +4e xR
- numH4¢¢|lunu¢00HHl¢u

- "imxouzmztu..
=+~ IHORBRBHABXHAOMRS=
ce -IZNEXN dgioNi==
- . ut.mm.%n.:m..»umon L 1]
. ——t 14
T. Caiazio .
i == - N

|-nv|»Huuu

% 302 00w D 0 D MK K

I xME NN L
0 ¢

Z8

9 330U)00J 393G ¢

-
[
L4

-
o
el WMEREN

H

[ |
SN el 0N el ooyl nn

SN H el ey

sl ved b #4101




PAVLIDIS

‘(ponuyuo)) 11 014
©

6 wm wb ﬂw @r wa
cetizz=t 44 ITI==SSOONNUWNAMBBOOK X XHHXNUNE 4UNE [ §3. L1111} [ ]
e unnuooo#ooi.¢HNHHnuummmmooozzz:::::::mﬂﬁ@@@****xmxmmmntzztmn-.-:----
aonw*;&.-n»un;uuqcnunovnuannynuu&aaﬁnnvu&;&&n.«u-.»u;u;n»«&;»nn«n.u««&«wa»»aaa&;»aa;an&«aannu«qna;;u»&»na.u»»a»«&ﬁ;n»‘una:uonunn
* »;ui.anuu-a»ug‘unu;-;...unauunﬁag¢a-nau&.a&»‘»unﬁ‘aunuwuunua»auu;ynua4¢««¢a¢-¢.n¢'an¢'u»n¢nnn.;. *
««uunuanyanﬁauuaon.naiyiun-.nwinao..¢¢~§»¢au;;'c;u-‘n»»;ann;ﬁnﬁn;&;;a;&cnf«»¢a.nn *
S ABRIESRERERRSRARRRERD RS AR ARRBEE KSR D AAk kR RKEEERRRAARERRRERAEENEEREER XX
O e L L L 3 i L i d S b * » 2 EEERBARRKEEIR AR
AERSARKEIIRAESEERRERRERSERE ¥ * RRkEEE *
P T T LI T 1L L » e
SN EREERERRAB AR & &
REERRALEREERES % X %
SEEBERRRIRSIE £X
PPt ETITI NI I -
AERRRNAREENES
SRR RBRRER
ARBRREREAD
EEEERERS
sEsaRRR
EERERREE
YTl
eAERE
PEIE T
[T Ii ]
SESERE
exnn
%
an
T
-
*

HOROWITZ AND T.

hm— OA— o*p

L.

8.

»
*
*

384



385

Picture Segmentation by a Tree Traversal Algorithm

9 9)0U)00} 3G 4

SIONBISN[I Y00q 8 WO} paziN3ip ainjord swosowosq) (0)-(8) g1 "9ig

(@ (%)

ch

It

n9=M 0=5 00L=7 02=C 3 H 4

]
]
+

ORI
L S RO I IO ]

+

+
Ve

1

ezcze- . --la
[ -2 leza === —=lolal=
- HE =i HE SRR
= -—= iz =i=il=ls=ell
4 == -t ==l =iszeszilez=
4z====zi==: LR =¢4zezi=llzs
+0 === == d4==c === ¢=
=N +4= ==+ +44===iliz===z
x W=+ =4+= +4izxiz==lzel
I + $=t44z==44==
IR + 4z44zzmz=gz ic
*I I B s
0= . R L] -
*= X =4z ==4==== -
XH I BOOk=+++444a4¢===4===4 :
3 ORNO=I=Ss++4++4=d===c=4x4==+ HE
i Tass+lasxIlan++s+4e=Sgd==40===44 ====
L LI e B S R e L R R ESRS

+4

IREREAT A= 4=+ 4444494442440

(1] RSkt abpp= b e bt bz =4==1

e =R P LRI F LS =4S4 Fdg=======
tedenteTa=aNNE NEBUEN=++TaxtunnsstIns=ttrt=4+
des ettt IUE BHZRII+=sT I+ 4443454444040

N 41444 x244211S HO==Ia+IIT4aslsdtannsonsbmnbzm=bstztsl

+reenbrthphnt] 2BWSTIsaTasTITsanat donsbc=ra=+s+s irus=
Ztxtantttantnl in TITa+TaTTTIaent tatnt=sTs 44t sa==x
wx+tarendII+4xIs [ 1] I=I+4I=TIntIxsesTnsdtntbers==tise=
+=k=gxlaledlIxIl== i SIT+T==nxIlet++ 4Tt eIt 43444 44==x=
+IS¥ONBO0III0OSIS= £3 ] ShITIII T antantttnnkttdbbtes==ts
«INENNUWIIOHBNMHE SI SHTT=3T alastanannlder=natdicuezis=
+%=6 L k] Il w2 I=Taloalxssts+4TI 444044 nns=0=2
*«I1H 8 Ir #====ITTIT+TI4%ann e xSt ea 44 es
+4%k N 1= S==IITI=T4TIIT*+sxxtt+hI=++s++=n+=
*+ %06 e0 == I=ITITIT4sIlas+xIobranleta==sut=
+4+1I0W RO =1 =xl====+s T+ 44 1T+ 42 TasxII+4x2=0=
44525 === =1 TaTISIals=TasssTanrnantsttitstitss
+%%S =I= =1 *xITTunIxIT 44T I42T2x+4IT4+42T4=1x
s +»=61 KITI*s II II==aaxIIaxnT==2s+I1TnaxTnntnsnttss
+=+=BRUREBBEROx 4] I1 =TTITwsxTI+eTanaal=IaxTansaTttnts=
=++=WMSOBRENGE=T +5=1 11 IOOCIETIOEICIORT DL L SE L Rttt i had
=4+ass+11=0HSsx=1s II I=#TaTlsssITansslatsIantttrdinntte
+4+44ene++SHR=I211s I ITa#sITTa==T4IaTT444TI4Tasden =42




PAVLIDIS

HOROWITZ AND T.

L.

S.

386

‘(penuniuo)) gi "1y
)

hw— om— o*w ow- mm wm wh wo @m
o=t il 44 1 II==SSOONNNRMRESOOXXXHHEHNNUS
I unun:.1:3&3Hunummmmoooizrzzmss:mmmwow::E_:ﬁm:z.::::-----
Y T Ty s L R d et e e L e T
P e L s L e S T PSP e
R D L P Y T E e T L ST T
E T L T s *
R e s P e T L L T T T x %
EERRRRRARRE R AKERRER &
EE R T T Y Pt T T I
RERAR RS AR AR R AR
e P P PR L]
AEERARER RS R KRR RAE
ARRKAKAERAE R RR R
EERERKRRRRRRRRNE KR &
ERERRRRREE KRR TR RN
R e T T L A ]
T s YT
AR RRRE SRR KA
R T E R T P ]
EERSRERRERRANKESE
EAREKD R LSRR RN
I I T I IS R T T
R KRR KRS RKEKE
EEEE KRERRRRK

AR K FERERKKE
% X FRAERERK
* Ok RAkEERIE
*x X & KEFXK

X X ¥ KX¥
* * x
* * b d

=
*



Picture Segmentation by a Tree Traversal Algorithm 387

One potential problem in all “global” picture processing schemes is the necessity to
keep the whole picture in fast memory during the computations. In this paper there was
no problem because the picture resolution was low (64X64). However this usually is
not sufficient for many applications, including radiography. The present scheme allows
the introduction of “paging” in such cases. Thus a 512X 512 picture can be divided
into sixty-four 64 X 64 pictures which can be processed independently up to and including
the elimination step. Then the regions so obtained can be used as input to a second pass
of the grouping algorithm. Since the number of regions is well below that of pixels, the
process can be quite economical in terms of memory requirements.

The results of the segmentation are well suited for syntactic pattern recognition, es-
pecially after polygonal or polynomial approximations of the region boundaries {28, 29].
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