
IS&T/SPIE Symposium on Electronic Imaging, Image and Video Communications and Proc., Jan. 20-24, 2003, Santa Clara, CA, USA 
 2003 SPIE Personal use of this material is permitted.  However, permission to reprint/republish this material for advertising or promotional purposes 
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works 
must be obtained from the SPIE. 
 

 

Probabilistic video stabilization using Kalman filtering and mosaicking 
 

Andrew Litvin, Janusz Konrad, William C. Karl 
ECE department, Boston University, 8 St. Mary’s Street, Boston, MA, 02215 

 
ABSTRACT 

 
The removal of unwanted, parasitic vibrations in a video sequence induced by camera motion is an essential part of 
video acquisition in industrial, military and consumer applications. In this paper, we present a new image processing 
method to remove such vibrations and reconstruct a video sequence void of sudden camera movements. Our approach to 
separating unwanted vibrations from intentional camera motion is based on a probabilistic estimation framework. We 
treat estimated parameters of interframe camera motion as noisy observations of the intentional camera motion 
parameters. We construct a physics-based state-space model of these interframe motion parameters and use recursive 
Kalman filtering to perform stabilized camera position estimation. A six-parameter affine model is used to describe the 
interframe transformation, allowing quite accurate description of typical scene changes due to camera motion. The 
model parameters are estimated using a p-norm-based multi-resolution approach. This approach is robust to model 
mismatch and to object motion within the scene (which are treated as outliers). We use mosaicking in order to 
reconstruct undefined areas that result from motion compensation applied to each video frame. Registration between 
distant frames is performed efficiently by cascading interframe affine transformation parameters.  We compare our 
method's performance with that of a commercial product on real-life video sequences, and show a significant 
improvement in stabilization quality for our method. 
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1. INTRODUCTION 
 
In the last decade the use of video acquisition devices increased dramatically due to the decrease in the cost of such 
devices and dramatic improvements in computer performance, making storage and processing of large data volumes 
possible. Video cameras became extremely popular in consumer market and their use in industry and the military is 
quickly growing. Unwanted, parasitic vibrations in video sequences, which are inherent to a handheld and mobile video 
acquisition device, harm the performance and value of such devices significantly. Both hardware and image processing 
approaches to video stabilization have been developed. The first approach, called optical stabilization, consists of 
implementing an optical system that compensates for unwanted camera motion using motion sensors and active optical 
system. This approach is potentially the most powerful, but makes video cameras significantly more expensive and, 
therefore, is not chosen for a broad class of devices. 

The second approach, which is a focus of this paper, consists in performing post-processing of the video sequence to 
eliminate unwanted motion in the video (swings and twists) caused by a person holding the camera or mechanical 
vibration. In this paper we follow the general stabilization framework. In the absence of blurring, unwanted movements 
of the camera do not modify the individual frame content, but only shift and rotate the image. Therefore, the stabilization 
must be carried out in the domain of global motion description, such as the set of geometric transform parameters of the 
frame with respect to an anchor frame. In order to compensate for unwanted motion, intentional component of the 
transformation between frames has to be estimated. Intentional motion, such as zooming the image, panning, 
translational or dolly motion with respect to the scene, is slow and smooth compared with unwanted, parasitic camera 
movements. For this reason, recovering the intentional motion parameters from the motion parameters of the sequence is 
a low-pass filtering operation in nature. After the intentional motion parameters are estimated, by “subtracting”  them 
from observed motion parameters, the unwanted, noisy component can be obtained and used to transform (warp) the 
frames. A correcting transform applied to each frame inevitably renders undefined certain regions around edges, causing 
artifacts. We now consider the steps of the algorithm in greater detail, and we position it with respect to the literature. 

At the first step of stabilization, modeling scene change due to camera is performed. Estimating a full 3D model of the 
scene including depth, while desirable, generally leads to ill-posed, complex problem that forms a field of research on its 
own. Consequently, we use a 2D global motion model, which is commonly done. Two-parameter translation model is 



 

 

used in [8, 10], four parameter 2D rigid motion model is used in [6], and a six parameter affine model is used in [3, 6]. 
An analysis of possible motion patterns is carried out in [9], leading to a 2.5D motion model that requires user 
interaction to choose the dominant character of the motion in the analyzed video sequence. We seek an automated 
technique, making an affine motion model a good choice. The affine model describes accurately pure rotation, panning, 
and small translations of the camera in a scene with small relative depth variations and zooming effects. For many 
outdoor and indoor scenes the above conditions are satisfied, and any errors resulting from model mismatch are 
attenuated by the proper choice of a cost function used in registration (finding transformation between frames). Several 
techniques to estimate this interframe transformation have been proposed. Phase correlation was used in [11] and feature 
tracking in [12]. The most precise approach is to minimize a global cost function constructed using the information from 
frames being registered. Such a matching cost function can be constructed from characteristic features extracted from the 
frames [6, 11, 12] or on image intensities [11]. In order to have a tractable registration procedure we use a cost function 
defined on image intensities. Multiscale optimization of the cost function coupled with gradient descent is used. 

Several approaches have been proposed to estimate intentional motion parameters once image transformation caused by 
motion is modeled. In [2, 7, 12], under the assumption of a static scene and absence of the intentional motion, a mosaic 
is constructed from video frames and displayed as a stabilized output. However these assumptions do not hold for most 
real life sequences. Camera motion is assumed to be linear between turn points in [4], leading to jumps in stabilized 
video. Kinetic camera motion model requiring precise knowledge of the mechanical system is used in [5]. Inertial model 
of the intentional camera motion is used in [9], effectively low-pass filtering motion parameters. This approach is based 
on a physical model, which is not realizable in practice, and filter design is carried out in ad-hoc manner. To this end, we 
propose a probabilistic and physics-based approach to estimate intentional motion parameters. By analyzing the 
statistical nature of intentional camera motion, we describe intentional motion parameters as functional random 
processes using physically meaningful state-space model. Unwanted movements are described as random noise 
processes. Kalman filtering framework is used to obtain optimal estimates of the intentional motion parameters. 
Tradeoffs between estimator performance and system storage requirements can be achieved by choosing different 
Kalman filtering.  

After the correcting transform is applied to each frame, some regions of the video frames become undefined, resulting in 
visual degradation of frames. No efficient method to deal with this problem has been reported in the literature, while 
image truncation and zooming are used in commercial software products. In these methods, edges in all frames are 
trimmed  in such a way that no undefined pixels appear in any frame while preserving rectangular area of fixed size, 
followed by magnification to keep the original size of the frame. This process causes loss of information, resolution 
degradation and limits the range of possible correcting transformation due to the fact that large transformations require 
large cuts and significant scaling. To this end we propose to use mosaicking. We fill undefined regions by pixel values 
from neighboring frames using the fact that nearby frames have similar content when properly aligned. Although 
constructing a mosaic from all frames in the stabilized video assuming stationary scene has been performed in [2, 7, 12], 
mosaicking was not used to perform reconstruction of the video frames in the process of video stabilization.  

The primary contributions of this paper are:  
1) constructing physics-based state-space model to describe the dynamics of intentional and unwanted motion 

parameters, and Kalman filtering estimation framework to perform intentional motion parameters estimation  
2) using mosaicking to fill undefined regions in the stabilized frames  

Both of these ideas, to the best of our knowledge, have not been applied to the video stabilization problem thus far. We 
present an integrated, end-to-end approach to performing stabilization. We report a comparison of our method’s 
performance with existing products’  performance on real-life video sequences showing significantly better results 
obtained by the proposed method. We show that our mosaicking technique gives excellent results, making truncation and 
zooming obsolete. Our paper is organized as follows. In Section 2 we give detailed description of our approach, and 
some of our results are presented in Section 3. We refer the reader to the project web page for all our results. Section 4 
concludes this paper. 
 

2. VIDEO STABILIZATION AND RECONSTRUCTION FRAMEWORK 
 
The challenge of compensation for unwanted, parasitic motion in a video sequence is rooted in the difficulty of 
separating unwanted motion between video frames from the motion inherent to the video sequence. Existing approaches 



 

 

to video stabilization concentrate on efficiently registering the frames, but with respect to compensation for unwanted 
motion they use either overly simple assumptions about camera motion or excessively complicated physics-based 
models matched to a particular application. Another difficulty is that the transformations applied to the video frames in 
order to compensate for unwanted motion create undefined image regions. Frame cropping and magnification are 
common tools to recover intensity in those regions and maintain rectangular frame shape and original size.  

In this paper we propose a new, integrated approach to solve the problem of video stabilization. A solution to both of 
above-mentioned issues constitutes two main contributions of this paper: 
1. We propose a probabilistic approach to model interframe motion parameters. The proposed dynamic motion model 

realistically describes interframe motion caused by camera movements. By using results from recursive estimation 
theory, we achieve optimal estimation of the intentional image transformation parameters. Our approach is flexible 
and allows the inclusion of available prior information about the intentional camera motion and characteristics of 
unwanted camera motion through modifications of the state-space model. 

2. Mosaicking is used to reconstruct undefined regions in each warped frame using information from neighboring 
frames, thus exploiting time correlations between neighboring frames in the video. The stabilization and undefined 
regions reconstruction steps of the algorithm are integrated by reusing estimates of transformation between adjacent 
frames. 

The overall algorithm consists of the following steps: 
1. Video sequence stabilization (unwanted motion compensation) 

1) Estimation of the pair-wise transformations between adjacent frames 
2) Estimation of the intentional motion parameters (Kalman filtering in time). 
3) Compensation of each frame for unwanted motion (frame warping) 

2. Reconstruction of undefined regions using mosaicking 
1) Estimation of the transformation between distant frames 
2) Warping distant frames and constructing mosaic for undefined regions in each frame  

The block diagram of our overall approach is shown in Figure 1 followed by the detailed description of our algorithm. 

 

Figure 1: Video stabilization algorithm. Flow of frames (intensities) is shown by thick arrows. 

2.1 Video sequence stabilization (unwanted motion compensation) 
At this stage, intentional motion parameters in the video are estimated and subtracted from the motion  parameters 
derived from the video sequence, yielding unwanted motion component, which is compensated for in the video sequence 
by applying proper transformation to each frame. 

2.1.1 Estimation of the transformation between adjacent frames 
The first part of the algorithm consists of estimating transformations between adjacent frames in order to bring them into 
alignment. These transformations are needed to model the scene changes due to motion. We use the common approach 
of describing the motion by a set of parameters assuming that the observed scene undergoes a geometrical 
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transformation between frames. Only static, planar scene transformation due to camera motion can be described 
accurately by such a geometric transform. In real case, background usually has small relative depth variation, and 
therefore its transformation between frames in the video can be approximated by such a geometric transform. We use an 
affine transformation model as a balance between model complexity and its descriptive capability discussed in the first 
section of this paper. Scene change and mismatch caused by depth changes in the scene are taken care of by combining 
this affine model with a robust cost function. Under an affine transformation, pixel locations ( , )x y=x  in frames 
In and In m+  are related by a transformation ( )m m

n nA ,b given by  
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where nx and n m+x are pixel coordinates before and after transformation respectively.  Transform 1 1)n n(A ,b , aligning 
frames In and 1In+ , is estimated by minimizing the following cost function with respect to 1 1)n n(A ,b :  
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where 1m =  and χ  is the set of all locations in the image plane for which transformed coordinates lie in the limits of 
the valid image coordinates. Cost function (2) is minimized by gradient descent using analytical expressions (not given 
here) for partial derivatives with respect to the parameters of the transformation. The choice of function ( )xϕ  is crucial 
for robustness of the transformation estimate to the motion of objects in the scene and to mismatch of the affine model 
due to depth variability. An error in estimating transformation parameters between two frames causes incorrect 
compensating transformations to be applied to a sequence of frames, resulting in annoying jumps in the processed video. 
Many such non-quadratic, slowly rising or redescending functions for ( )xϕ have been proposed. Here we use an 
approximation to the pl -norm given by 

 2 2( ) ( )
p

x xϕ β= +  (3) 

with 0.01β = . The non-zeroβ  insures differentiability of the cost function near zero, needed for proper functioning of 
the gradient descent approach. In our experiments we use 1p =  chosen empirically from several test sequences by 
minimizing occurrences of wrong estimated transformation parameters. In order to avoid local minima of the cost 
function (2) and accelerate the convergence we use a multiscale implementation. The result at a coarser scale is used to 
initialize a solution at the next finer scale. At scales 8,4 and 2, frames are low-pass filtered and subsampled by a factor of 
8,4 and 2, respectively, before applying gradient descent approach to minimize (2). Solution for each scale serves as 
initialization for the next finer scale.  

2.1.2 Estimating intentional motion parameters 
In order to compensate the video sequence for transformation caused by unwanted camera movements, transformations 
caused by intentional motion of the camera should be identified using interframe motion parameters estimated at the 
previous stage of the algorithm and prior information on motion dynamics. Instead of modeling motion of the camera we 
introduce a closely related parameterization of the ongoing image transformation in the natural form of “cumulative”  
transform defined as registration of the current frame with respect to the first frame, obtained by cascading individual  
interframe transformations. The cumulative transform for  framen , denoted by ( , )n nA� �b , can be obtained as follows: 
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Note that the cumulative transform parameters do not necessarily describe a transform allowing the reconstruction of a 
current frame from the first frame because of the ongoing scene changes and accumulation of errors, but rather to 
represent the continuously changing parameters whose “ increments”  describe image transformation between adjacent  
frames. Elements of matrix A describe zoom, rotation and dolly motion of the camera, and vector b describes panning 
and tracking motion. Similarly, we describe the image transform parameters representing intentional motion in terms of 

intentional cumulative transform ˆ ˆ( , )n nA b . The difference between ( , )n nA� �b and ˆ ˆ( , )n nA b is attributed to unwanted,  
parasitic camera motion.  

Optimal estimation of ˆ ˆ( , )n nA b is carried out using a recursive Kalman filtering algorithm. We treat ( , )n nA� �b as noisy 
observations of intentional cumulative transform parameters obeying physics-based dynamic model. The noise 
component in observed cumulative motion parameters is attributed to the unwanted camera motion.  



 

 

The state model for each of the parameters ˆ ˆ( , )n nA b depends on the real-life expected behavior of these parameters. Two  

distinct behavior patterns can be identified leading to different dynamic models for different parameters. 

1. Diagonal values 1̂a  and 4â  are primarily responsible for zooming and dolly motion. Both types of motion 

usually take place with constant velocity that is subject to random perturbations. The same reasoning applies to 
parameters 1b̂  and 2b̂ that describe translation. Translation is typically caused by camera panning or tracking 
motion which is likely to take place with constant velocity. The common approach to build a dynamic model 

for a variable θ changing at a nearly constant rate is to introduce velocity variable vθ  that is constant subject to 
random perturbations. An increment of the variable at time t , ( )tδθ  is equal to the value of the velocity 
variable ( )v tθ . We introduce velocity variables 1 4 1 2

ˆ ˆˆ ˆ, , ,v v v va a b b for each of 1 4 1 2
ˆ ˆˆ ˆ, , ,a a b b , respectively. It is 

reasonable to assume the independence of dynamic models for each of the 4 parameters. For example, 
parameters 1̂a and 1̂

va follow the dynamic model given by 
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where (0, )zN σ is white Gaussian noise with variance zσ .  

2. The remaining parameters 2â  and 3â  primarily describe rotation of the image caused by camera tilts. We can 
assume these parameters to be constant in the absence of noise, where perturbations themselves are random. 

This leads to a simple dynamic model for 2â  and 3â . For example, for 2â , we have 
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The overall state-space model for the intentional cumulative transform parameters is given by 
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In our implementation we make no assumption as to any coordination between different modes of camera motion 
(panning in different directions or panning and zoom), that leads to adapting the independence assumption for noise in 
different state-space model variables. Variance of the noise terms is different for each kind of variable: ( ,z rσ σ and bσ ). 
The observed cumulative transform parameters ( , )n nA� �b are treated as noisy observations of the intentional cumulative 

transform parameters. The velocity variables 1 4 1 2
ˆ ˆˆ ˆ, , ,v v v va a b b  are auxiliary variables which are not observed. The 

observation model for each parameter is independent, leading to observation model 
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Here we also assume independence of the white Gaussian observation noise for each variable in Eq. (8). We discuss 
more realistic assumptions in the last section of this paper. Variances of noise processes , ,z r bσ σ σ in Eq. (7) are 
determined by the desired degree of smoothness of  the intentional camera motion. Increasing variance for a given 
parameter means increasing variability of the corresponding state variable, leading to more random estimate for the 
corresponding intentional state variable, and a more jerky stabilized video. In the limiting case of zero variance, the 
corresponding parameter is assumed to be constant, leading to a stabilized video with no allowed motion. We call this  

case “total compensation”  (of motion).  Observation noise variances , ,obs obs obs
z r bσ σ σ  in Eq. (8) describe the variability 

of unwanted transformations between frames. The effect of these values on the resulting estimates ˆ ˆ( , )n nA b is opposite 

to the effect of , ,z r bσ σ σ . In the limiting case of zero observation noise, parameters ˆ ˆ( , )n nA b
 
are set equal to 

( , )n nA� �b resulting in the identity compensating transforms and no stabilization. In practice all state model and  
observation noise variances are set empirically to achieve acceptable stabilization results. In our experiments this is done  
without actually performing the stabilization, but rather by looking at the filtered sequences of ˆ ˆ( , )n nA b trading off 

smoothness and fidelity of estimates to the observations (large differences between ˆ ˆ( , )n nA b and ( , )n nA� �b lead to  
significant compensating transformations and possible visual artifacts). A possibility of an automatic selection of noise 
variances is discussed in the last section. 

Kalman filtering using Eq. (7) and (8) can be performed using different schemes depending on the order in which 
observations are processed, among them recursive filtering, fixed-point and fixed-lag filtering. Depending on the 
application different option can be used. In real-time applications, recursive or fixed lag estimation is used in which the 
data are processed sequentially as they arrive. In post-processing applications without storage constraints, fixed point 
filtering can be used to get full advantage of all observations available prior to the processing. In producing results given 
in this paper we use fixed-point (smoothing) Kalman filter. 
 
2.1.3 Compensation of each frame for unwanted transformation (frame warping) 
Given the observed cumulative transform parameters ( , )n nA� �b and the estimates of intentional cumulative transform 

parameters ˆ ˆ( , )n nA b , the difference between them is attributed to unwanted transformations and has to be compensated 

for. This can be achieved by inverting the former and applying the latter transform. Resulting transform ( , )n nA b
 
is 

given by  
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where nx  and nx are initial and transformed coordinates in frame n , respectively. Using (9), a warped frame I n is 
computed as follows 
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In our implementation, computing image values at non-integer locations in (10) is carried out by cubic interpolation.  

2.2 Reconstruction of undefined regions using mosaicking 
After the compensating transformation is applied to each frame, undefined regions appear near the edge of each frame. 
The extent of these regions varies from frame to frame and presents unacceptable visual artifacts. To our knowledge the 
solution to this problem has not been discussed in the literature, while available software products use frame trimming  



 

 

 

Figure 2: Mosaicking illustration for a typical frame with 2 previous and 2 future aligned frames shown.  Red (grey in 
b/w version) areas correspond to missing areas in the reconstructed frame (with 3 pixel overlap over defined areas in 
central frame), black areas correspond to undefined areas. 

and magnification or filling by a constant value. These methods lead to severe quality degradation of the resulting video 
and limit the range of possible correcting transformations (significant transformations lead to large undefined areas). 
Here we propose to use mosaicking for each frame in order to exploit temporal correlations between frames. Figure 2 
illustrates the mosaicking process for one frame of our test sequence. Five consecutive frames are shown with the frame 
being reconstructed shown in the center. Two previous and two future frames are aligned with the transformed middle 
frame. Black regions in the frames are undefined regions. Red (grey in b/w version) regions correspond to defined pixels 
in neighboring frames collocated with undefined pixels in the middle frame (with overlap). These pixels are used to 
assign a value to a corresponding pixel in the reconstructed frame. Our experiments show that in most cases for each 
undefined pixel, several of the aligned neighboring frames contain a valid pixel value. Note that in Figure 2, not all 
pixels can be reconstructed from just four neighboring frames and more frames are needed. We emphasize the difference 
between our method, in which separate mosaic is constructed for each frame, and existing techniques constructing 
mosaic from all frames in the video, relying on scene stationarity. Such methods fail when the scene undergoes any 
change. Our method is detailed below. 

2.2.1 Estimation of the transformation between distant frames 
In order to properly align up to M future and past frames with respect to the current warped frame n , we need to find 
registration parameters of these frames with respect to the current frame. For a given frame n , using interframe motion  

parameters 1 1( )n nA ,b ,determined in the initial stage of our stabilization algorithm, as initial conditions, we sequentially  
estimate the global transform parameters between frames n and n m±  where 2 m M≤ ≤ . Simply cascading 
interframe transformations leads to error accumulation and hence, potential misalignment of different frames composing  
the mosaic. Instead, for each m , cascaded transforms ( )m m

n nA ,b  and 1 1( )n m n m+ +A ,b are used to initialize the solution 
for 1 1( )m m

n n
+ +A ,b . The coordinate transformation obtained using cascaded transforms is given by 
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The transform 1 1( )m m
n n

+ +A ,b  is then estimated by minimizing (2) as described above with only a few iterations of the  
gradient descent at the finest scale needed because the initial solution given by (11) is very close to the final solution. 
After M future frames are registered with respect to each frame, no additional computation is needed to register past 



 

 

M frames with respect to any frame. For instance, the registration transformation for past frame ( )m− with respect to 
frame n  can be found by inverting the registration transform of frame n  as a future frame with respect to frame 
( )n m−    

 ( )1 1( , ) ( ) , ( )m m m m m
n n n m n m n m
− − − −

− − −= −A A Ab b  (12) 

 
2.2.2 Warping distant frames and composing mosaic for undefined regions in each frame 
Each frame out of 2M neighboring frames is aligned with respect to the warped current frame I n given by  (10). 
Aligning transform for frame In m+ is formed by cascading inverted registration transform ( )m m

n nA ,b with the correcting 
transform ( , )n nA b  defined in  (9). The resulting warping transform is given by 
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and the warped frame I n is computed as follows 
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For each undefined pixel x in the target frame I n , the reconstructed image value is found as follows 
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where the weights ( , )E n m are set to the inverse of the errors of registration (I , I , , )n n m m m
n nE + A b  obtained by 

minimizing (2). Large error of registration for a particular frame is the sign of a considerable mismatch, therefore the 
weight for this frame is set to a smaller value. We use additional cross-weighting at the boundary of undefined regions, 
setting the weight to depend linearly on the distance from the boundary with overlap width of 6 pixels. Taking multiple 
frames into account in computing the value of a particular pixel and using smooth transition between the defined area 
and the mosaic help to redistribute error over entire reconstructed region, reducing visual artifacts. 
 

3. RESULTS 
 

We refer the reader to the project web page to view initial video sequences and all our results discussed in this paper 
(http://iss1.bu.edu/~litvin/stabilization/index.html).  

We test our techniques on 3 real-life video sequences (which we call A, B and C) acquired using a hand held video 
camera without any image stabilization. These three sequences contain increasing amount of vibrations and increasing 
depth variation and object motion. Sequence A is acquired by a person walking on the beach. It does not contain 
foreground objects. Sequence B contains foreground as well as background objects and more severe swings and 
vibrations. Sequence C is acquired from a moving car and contains extensive shear transformations between frames. 
We first illustrate different aspects of our technique on sequence A, which contains both translational and rotational 
unwanted motion. It is critical that global motion parameters be estimated accurately between each two consecutive 
frames, otherwise incorrect compensations are applied which result in annoying discontinuities in the resulting video. 
Using sequence A, we show how the accuracy of interframe motion parameters can be tested. In order to simplify the 
task we modify the motion model. First, we assume only translational motion between frames described by vector b . 
Using this model, the cumulative transform parameters are given by 

 1

1

n
n

n n
k

+

=

= ��
b b  (16) 

The components of n

	
b  for sequence A are shown in Figure 3. Spikes correspond to sudden swings of the camera. 

Assuming static camera (performing “total motion compensation” ), the correcting transform becomes 

 n n n= − 
x x b  (17) 

The result of applying such compensating transform is illustrated in Figure 4 and included on the project web page. It 
can be seen that landmark objects in the corrected sequence do not move with respect to the frame coordinates, while  
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Figure 3: Cumulative motion parameters for sequence A using translational motion model. 
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Figure 4: Compensating transform applied to selected frames of sequence A assuming static intentional camera and only 
translational motion model 

 
rotational vibrations remain uncorrected. No translational jumps are observed, which indicates that using a 2 parameter 
model an accurate solution was found for interframe motion parameters. 

Now we employ the full 6-parameter interframe affine motion model. In Figure 5, we show the resulting cumulative 
transform parameters calculated according to Eq. (4) and the filtered parameters obtained using a fixed-interval Kalman 
filtering. In Figure 6, we show four frames of sequence A before and after applying the stabilization algorithm. It can be 
seen that camera panning and tilting are largely compensated for. Full results are given on the project web page. Our 
method performs well even for more difficult sequences B and C, although some model mismatch artifacts can be 
noticed. The solution to these problems can be achieved by using interframe motion model with better descriptive 
capabilities as well as by adaptively eliminating the impact of foreground and moving objects (for example, by including 
preliminary step of block motion estimation followed by masking out blocks with fast motion). 



 

 

 
Figure 5: Red straight lines – Inter-frame motion parameters obtained for sequence A; Green dashed lines - intentional 
cumulative transform parameters estimated using smoothing Kalman filtering 

 

The evaluation and comparison of video stabilization algorithms is a difficult task given that no ground truth is available 
for real sequences and usefulness of synthetic sequences is limited. Perceptual judgment of stabilization is the best 
option to evaluate video stabilization algorithms aimed at the human observer. On the project web page we show the  
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Figure 6: Four frames of sequence A before (left) and after (right) stabilization. 

 

comparison of our method with one of the available software products, “Steady Hand”  by a Germany based company 
DynaPel Inc. A displacement model and global search method are used in this product to estimate interframe 
transformations. Our results show significantly higher quality of stabilization. Our reconstruction does not change the 
scale due to our mosaicking-based reconstruction of undefined areas. The evidence of using mosaicking can only be 
noticed in single frames.  
 



 

 

4. CONCLUSIONS 
 

In this paper we presented a novel approach to video stabilization. We used a probabilistic approach to model and 
separate unwanted, parasitic camera motion parameters from the intentional camera motion parameters estimated out of 
the video sequence. We used mosaicking to reconstruct undefined regions in the frames caused by the applied 
compensating transformations. 

Using our technique we obtained promising preliminary results on random test sequences with complex motion and 
severe vibrations. We compared our results with one of commercial products and showed a significant improvement of 
performance for our technique.  

Several aspects of our method can be improved to achieve an even better performance and eliminate the need to adjust 
dynamic model parameters. A more realistic colored, correlated noise model may be used to estimate the representation  

of the intentional camera position. For example, noise processes of state variables 2a  and 3a  are correlated because  
these parameters describe the angle of the camera tilt. Noise is colored for each variable because the time scale of typical 
camera swing or tilt is usually longer than sampling interval. Full covariance matrices of process and observation noise 
models can be estimated and tracked dynamically to accommodate changing conditions of the footage (such as speed of 
the vehicle or person holding the camera). A more efficient method can be employed in estimating interframe transform 
parameters to achieve more robust and real-time performance. Advanced multiscale mosaicking technique such as one 
used in [1] can eliminate remaining visual artifacts due to changes in illumination between frames and errors in 
registration. Our method of stabilization can be easily adapted to perform additional processing, such as sampling rate 
conversion, static mosaic construction, ego-motion estimation. 
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