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91, 8487 (1986).
40. D. Olbers, M. Wenzel, in Oceanic Circulation Models:

Combining Data and Dynamics, D. L. T. Anderson, J.
Willebrand, Eds. (Kluwer Academic, Dordrecht, Neth-
erlands, 1989), pp. 95–139.

41. K. L. Polzin, E. Firing, Int. WOCE Newsl. 29, 39
(1997).

42. R. H. Karsten, H. Jones, J. Marshall, J. Phys. Oceanogr.
32, 39 (2003).

43. W. H. F. Smith, D. T. Sandwell, Science, 277, 1956 (1997).
44. A. H. Orsi, T. Whitworth, W. D. Nowlin, Deep-Sea

Res. I 42, 641 (1995).
45. A Natural Environment Research Council postdoc-

toral research fellowship supported A.C.N.G. during
the analysis and writing of this report. Feedback from
L. Goldson, E. Kunze, R. Muench, K. Oliver, B. Sloyan,
K. Speer, K. Stansfield, A. Watson, and two anony-
mous reviewers is gratefully acknowledged.

29 August 2003; accepted 18 November 2003

Virus-Based Toolkit for the
Directed Synthesis of Magnetic
and Semiconducting Nanowires
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We report a virus-based scaffold for the synthesis of single-crystal ZnS, CdS, and
freestandingchemicallyorderedCoPtandFePtnanowires,withthemeansofmodifying
substrate specificity through standard biological methods. Peptides (selected through
an evolutionary screening process) that exhibit control of composition, size, and phase
during nanoparticle nucleation have been expressed on the highly orderedfilamentous
capsidof theM13bacteriophage.The incorporationof specific,nucleatingpeptides into
the generic scaffold of the M13 coat structure provides a viable template for the
directed synthesis of semiconducting and magnetic materials. Removal of the viral
template bymeans of annealing promotedoriented aggregation-based crystal growth,
forming individual crystalline nanowires. The unique ability to interchange substrate-
specific peptides into the linear self-assembled filamentous construct of the M13 virus
introduces a material tunability that has not been seen in previous synthetic routes.
Therefore, this systemprovides a genetic toolkit for growing and organizing nanowires
from semiconducting and magnetic materials.

The reliance of future technologies on de-
veloping scalable and economic methods
for the fabrication of one-dimensional (1D)
systems has spurred intense and rapid
progress in the area of materials synthesis.
In particular, 1D materials have been en-

thusiastically pursued for their applications
in the study of electrical transport (1), op-
tical phenomena (2), and as functional units
in nanocircuitry (3). Pursuit of “bottom-up”
methods for the synthesis of semiconduct-
ing, metallic, and magnetic nanowires has
yielded strategies including, but not limited
to, vapor liquid solid (VLS) (4), chemical
(5), solvothermal, vapor phase, and tem-
plate-directed fabrication (6). Although
each method developed for the production
of nanowires has had success in achieving
high-quality materials, no distinct strategy
to date has yielded monodisperse, crystal-
line nanowires of radically different com-
positions. The realization of such a system

1Departments of Chemistry and Biochemistry, 2Institute
for Cellular and Molecular Biology, 3Department of Chem-
ical Engineering, University of Texas (UT) at Austin, Austin,
TX 78712, USA. 4Department of Chemistry, 5Department
of Materials Science and Engineering and Biological Engi-
neering Division, Massachusetts Institute of Technology
(MIT), Cambridge, MA 02139–4307, USA.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-
mail: belcher@mit.edu

R E P O R T S

www.sciencemag.org SCIENCE VOL 303 9 JANUARY 2004 213



would require the combination of
substrate-specific ligands with the predict-
ability of self-assembly that is commonly
found in nature. Recently, biological fac-
tors have been exploited as synthesis direc-
tors for nanofibers (7, 8), virus-based par-
ticle cages (9), virus-particle assemblies
(10, 11), and nonspecific peptide templates
(12). This is due to the high degree of
organization, ease of chemical modifica-
tion, and naturally occurring self-assembly
motifs inherent in these systems.

The ability to store information about a
material, including composition, phase, and
crystallographic detail, within the genetic
code of the M13 bacteriophage virus DNA
has proven to be a viable means of synthe-
sizing and organizing materials on the
nanometer scale. The use of phage display
techniques (using peptide libraries consist-
ing of 	109 random sequences) has led to
the discovery of materials-specific peptides
that have preferential binding (13), control
over nanoparticle nucleation (14), and the
ability to order on the basis of the inherent
shape anisotropy of the filamentous M13
virus (11). Because the protein sequences
responsible for these attributes are gene
linked and contained within the capsid of

the virus, exact genetic copies of the virus
scaffold are easily reproduced by infection
into its bacterial host.

We report the general synthesis of 1D
nanostructures based on a genetically mod-
ified virus scaffold for the directed growth
and assembly of crystalline nanoparticles
into 1D arrays, followed by annealing of
the virus-particle assemblies into high as-
pect ratio crystalline nanowires through
oriented aggregation-based crystal growth
(15, 16) (Fig. 1A). The synthesis of analo-
gous nanowire structures from funda-
mentally different materials, the II-VI
semiconductors ZnS and CdS and the crys-
tal structure L10 ferromagnetic alloys CoPt
and FePt, demonstrates both the generality
of the virus scaffold and the ability to
precisely control material characteristics
through genetic modification. In contrast to
other synthetic methods (6), this approach
allows for the genetic control of crystalline
semiconducting, metallic, oxide, and mag-
netic materials with a universal template.

Evolution of substrate-specific peptides
through phage display technologies for the
directed nucleation of materials on the
nanometer scale has been previously re-
ported and serves as the basis for the ma-

terial specificity in the virus template (13).
Screening of the ZnS, CdS (14, 17), FePt,
and CoPt systems (18) with commercially
available bacteriophage libraries (New En-
gland Biolabs) expressing either a disul-
phide constrained (Cys-Cys) heptapeptide
or a linear dodecapeptide as a fusion to the
gene product (gP) 3 protein located at the
proximal tip of the virus has yielded nucle-
ating peptides with the following sequenc-
es: CNNPMHQNC (termed A7; ZnS),
SLTPLTTSHLRS (termed J140; CdS),
HNKHLPSTQPLA (termed FP12; FePt),
and CNAGDHANC (termed CP7; CoPt)
(19). The incorporation of these peptides
into the highly ordered, self-assembled
capsid of the M13 bacteriophage virus
provides a linear template that can simul-
taneously control particle phase and com-
position, while maintaining an ease of ma-
terial adaptability through genetic tuning of
the basic protein building blocks.

The M13 bacteriophage is a high–
production rate virus (200 mg/liter) compris-
ing five genetically modifiable proteins (20–
22): gP3, gP6, gP7, gP8, and gP9. About
2700 copies of the gP8 protein form the
capsid of the wild-type virus. The gP8 protein
was genetically modified and expressed using
a phagemid system, resulting in the fusion of
the substrate-specific peptides to the N termi-
nus of the gP8 protein (14). During assembly,
stacking of the gP8 unit cell results in a
fivefold symmetry down the length (c axis) of
the virus; this stacking is also the origin of the
ordering of fusion peptides in a 3D structure
(Fig. 1B). Computational analysis of peptide
expression on the capsid of the virus revealed
that the nearest neighbor peptide separation
stabilized around 3 nm at and above 20%
incorporation (Fig. 1C). Consequently, high
incorporation of the substrate-specific fusion
peptides is not required for complete miner-
alization of the virus to occur. Trifunctional
templates can be realized through further ge-
netic modification of the proximal and re-
mote tips of the virus [specifically, the gP3
and gP9 proteins (23)], which can be used to
push the current system to higher aspect ra-
tios and introduce materials that we screened,
including noble metals, semiconductors, and
oxides, to assemble functional heterostruc-
tured materials (Fig. 1D).

Mineralization of the ZnS and CdS sys-
tems has been described previously (11, 14,
17); the process involves incubating the viral
template with metal salt precursors at reduced
temperatures to promote uniform orientation
of the peptide molecules during nucleation
(24), which leads to the preferred crystallo-
graphic orientation of nucleated nanocrystals.
Before annealing, wurtzite ZnS and CdS
nanocrystals (3 to 5 nm) that were grown on
the virus surface were in close contact and
preferentially oriented with the [001] direc-

Fig. 1. Visualization of the M13 bacteriophage and the subsequent nanowire synthesis. The gP8 coat
assembly was reconstructed from the x-ray fiber crystallographic data (PDB number 1ifj). The gP3 and
gP9 proteins located at the proximal and remote ends of the virus are not to scale and serve as
representations of the proteins. (A) The nanowire synthesis scheme is visualized for the nucleation,
ordering, and annealing of virus-particle assemblies. (B) The symmetry of the virus allows for ordering
of the nucleated particles along the x, y, and z directions, fulfilling the requirements for aggregation-
based annealing. (C) The highly ordered nature of the self-assembled M13 bacteriophage promotes the
preferred orientation seen in nucleated particles through the rigidity and packing of the expressed
peptides, which is visualized at 20% incorporation. (D) The construct of the M13 bacteriophage virus
showing the genetically modifiable capsid and ends, specifically the gP3, gP8, and gP9, which are coded
for in the phagemid DNA enclosed within the virus capsid.
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tion and the (100) (ZnS) and (001) (CdS)
planes, which were perpendicular to the wire-
length direction. These data are supported by
electron diffraction (ED), high-resolution
transmission electron microscopy (HRTEM),
high-angle annular dark-field scanning trans-
mission electron microscopy (HAADF-
STEM), and dark-field diffraction-contrast
imaging (Fig. 2) (25). Particles attached to
the virus were prohibited from fusing under
initial synthesis conditions because of the
blocking effects of the nucleating peptides,
and they therefore required removal of the
template to form single-crystal nanowires.
Thermal gravimetric analysis of the virus-
particle system was used to obtain a critical
temperature for the synthesis of crystalline
nanowires, and it showed removal of the
organic materials by 350°C (26). This agreed
well with the minimum temperature observed
for the fusion of adjacent particles by TEM
with annealing, which we performed in situ
using a thermal stage (27).

Annealing of the mineralized viruses at
temperatures below the ZnS and CdS par-
ticle melting point (400° to 500°C) allowed
the polycrystalline assemblies to form
single-crystal nanowires through the re-
moval of the organic template and the min-
imization of the interfacial energy (28)
(Fig. 2, B and E, wires measure 600 to 650
nm in length for ZnS and 475 to 500 nm for
CdS; both have diameters of 	20 nm). ED
and HRTEM revealed the single-crystal na-
ture of individual nanowires that inherited
the preferred orientation seen in the precur-
sor polycrystalline wires when the grain
boundaries were removed (29, 30) (Fig. 2,
C and D). The [100] direction and (001)
plane orientations of the observed ZnS
nanowires were consistent with common
elongation directions for II-VI nanowires,
even though these are thermodynamically
high-energy planes (Fig. 2, B and C) (15,
16, 31). HRTEM of the single-crystal CdS
nanowires revealed a lattice spacing of 2.4
Å, which was consistent with the unique
2.4519 Å separation between two (102)
planes in bulk wurtzite CdS crystals [Joint
Committee on Powder Diffraction Stan-
dards (JCPDS) card number 41-1049]. The
43.1° orientation of (102) lattice planes
with respect to the nanowire axis indicated
that the nanowire was elongated along the
[001] direction and again confirmed the
wurtzite structure (Fig. 2F).

Extending the virus-directed synthesis
approach to the ferromagnetic L10 CoPt
and FePt systems was a natural direction
for both demonstrating the diversity of
applicable materials and addressing current
technological issues regarding the develop-
ment of low-dimensional magnetic materi-
als. Platinum-alloyed magnetic materials of
the chemically ordered L10 phase have

been of recent interest because of their high
coercivity, resistance to oxidation, and
inherent magnetic anisotropy, which are
necessary for ultrahigh-density recording

media (32). Although synthetic routes such
as VLS yield exquisite 1D semiconduc-
ting structures, and nonspecific template
schemes are applicable to a range of mate-

Fig. 2. Electron microscopy of both the pre- and postannealed ZnS and CdS viral nanowires. (A) Dark-field
diffraction-contrast imaging of the pre-annealed ZnS system using the (100) reflection reveals the crystal-
lographic ordering of the nucleated nanocrystals, in which contrast stems from satisfying the (100) Bragg
diffraction condition. (Inset) ED pattern of the polycrystalline pre-annealed wire showing the wurtzite crystal
structure and the single-crystal type [001] zone axis pattern, suggesting a strong [001] zone axis preferred
orientation of the nanocrystals on the viral template. g � (100)* denotes the reciprocal vector of (100)
crystal planes, which is perpendicular to the (100) planes and has a length inversely proportional to the
interplanar spacing of the (100) planes. (B) Bright-field TEM image of an individual ZnS single-crystal
nanowire formed after annealing. (Inset, upper left) ED pattern along the [001] zone axis shows a single-
crystal wurtzite structure of the annealed ZnS nanowire. (Inset, lower right) Low-magnification TEM image
showing the monodisperse, isolated single-crystal nanowires. (C) A typical HRTEM of a ZnS single-crystal
nanowire showing a lattice image that continually extends the length of the wire, confirming the single-
crystal nature of the annealed nanowire. The measured lattice spacing of 0.33 nm corresponds to the (010)
planes in wurtzite ZnS crystals. A 30° orientation of (010) lattice planes with respect to the nanowire axis is
consistent with the (100) growth direction determined by ED. (D) HAADF-STEM image of single-crystal ZnS
nanowires, whichwere annealed on a siliconwafer. (E) HAADF-STEM images of CdS single-crystal nanowires.
(F) A HRTEM lattice image of an individual CdS nanowire. The experimental lattice fringe spacing, 0.24 nm,
is consistent with the unique 0.24519-nm separation between two (102) planes in bulk wurtzite CdS crystals.
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rials, both have faced difficulties in produc-
ing high-quality, crystalline, metallic, and
magnetic nanowires in freestanding form (33).

The M13 bacteriophage was modified by
fusing either the CP7 CoPt-specific or FP12
FePt-specific peptide into the virus capsid. Nu-

cleation of the CoPt and FePt particles was
achieved by means of the chemical reduction of
metal precursor salts in the presence of gP8-
modified viruses (18, 34). Annealing of the
assemblies at 350°C was necessary for the re-
moval of the virus template, and it promoted the

growth of crystalline CoPt and FePt nanowires
that retained the L10 phase of the as-prepared
particles and that were uniform in diameter (10
nm � 5%). The crystalline nature of the wires
can be seen in the selected area ED pattern,
which also shows the characteristic (001) and
(110) L10 peaks, and in HRTEM lattice imag-
ing (Fig. 3, C and D). The (111) plane that was
perpendicular to the long axis of the CoPt wires
and that had a lattice spacing of 2.177 Å was in
agreement with the reported value of 2.176 Å,
which again confirmed the highly crystalline
nature of the material (Fig. 3D, JCPDS number
43-1358). The persistence of the L10 phase,
which has traditionally been accessible only
above 550°C (35), was attributed to the propen-
sity of particles to maintain their original orien-
tation during aggregation-based annealing.

Monte Carlo simulations of the A7 con-
strained sequence resulted in a 21% decrease
in the standard deviation of backbone dihe-
dral angles upon transfer of the peptide from
isolation into the capsid environment, dem-
onstrating the rigidity imposed on the fusion
peptide (36). We believe that the ordering of
the nucleated particles with regard to pre-
ferred crystallographic orientation along the
length of the virus was a result of the stability
of the peptide fusion and the symmetry of the
virus coat. This nanocrystal ordering promot-
ed the single-crystal nature of the annealed
nanowires by satisfying the orientation re-
quirements of the aggregation-based crystal
growth mechanism (15). Although particles
exhibiting orientations that were not coherent
with that of the majority were to be expected,
these minority nanocrystals should rotate to
adopt the preferred crystallographic orienta-
tion and merge with the majority during an-
nealing to minimize both the interfacial and
grain-boundary energies (31, 37, 38).

The exploitation of the self-assembly motifs
employed by the M13 bacteriophage to produce
a biological scaffold provides a means of
generating a complex, highly ordered, and eco-
nomical template for the general synthesis of
single-crystal nanowires. By introducing pro-
grammable genetic control over the composi-
tion, phase, and assembly of nanoparticles, a
generic template for the universal synthesis of a
variety of materials can be realized. Further
advances in the fabrication of nanoscale mate-
rials and devices can be achieved through the
modification of the remaining four proteins in
the virus to incorporate device-assembly direc-
tors. Overall, modification of biological sys-
tems by the introduction of substrate-specific
peptides presents a means of achieving well-
ordered nanomaterials in a cost-effective and
scalable manner.
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Boron Nitride Nanomesh
Martina Corso, Willi Auwärter, Matthias Muntwiler, Anna Tamai,

Thomas Greber, Jürg Osterwalder*

A highly regular mesh of hexagonal boron nitride with a 3-nanometer
periodicity and a 2-nanometer hole size was formed by self-assembly on a
Rh(111) single crystalline surface. Two layers of mesh cover the surface
uniformly after high-temperature exposure of the clean rhodium surface to
borazine (HBNH)3. The two layers are offset in such a way as to expose a
minimum metal surface area. Hole formation is likely driven by the lattice
mismatch of the film and the rhodium substrate. This regular nanostructure
is thermally very stable and can serve as a template to organize molecules,
as is exemplified by the decoration of the mesh by C60 molecules.

Pairs of boron and nitrogen atoms are iso-
electronic to pairs of carbon atoms. Thus,
boron nitrides show a structural variety
similar to that of carbon solids, including
graphitic hexagonal boron nitride (h-BN)
and diamond-like cubic boron nitride (c-
BN) (1), onion-like fullerenes (2), and
multi- and single-wall nanotubes (3, 4).
Some carbon allotropes, such as C60, are
difficult to form as BN analogs, because the
formation of B-B or N-N bonds is disfa-
vored, and this property excludes pentagon

formation. We report on a form of BN solid
that so far has no analog in carbon allo-
tropes. A highly regular metal-supported
BN mesh of nanometer dimensions can be
grown by high-temperature chemical vapor
deposition on Rh(111). The hexagonal
mesh has its basis in the planar, h-BN–type
bonding and consists of two atomic layers.

Weakly physisorbed layers of h-BN on
metal surfaces have been studied for about
a decade (5). Well-ordered films can be
grown by thermal decomposition of bor-
azine (HBNH)3 on transition metal surfaces
(6). In all cases studied so far, the film
growth was self-limiting at one monolayer
(ML); beyond that, the sticking coefficient
of the precursor molecule becomes exceed-

ingly small. Most of the work has been
concentrated on the lattice-matched system
of h-BN on Ni(111), where large terraces of
one-ML h-BN are formed (7). The films are
insulating in the sense that the B and N
electronic states do not contribute to the
Fermi sea of the Ni surface (8, 9). Within
this ML, the structure is the expected gra-
phitic sheet, yet with a weak corrugation.
The N atoms are located on top of the
outermost Ni atoms, and the B atoms occu-
py face-centered cubic adsorption sites of
the Ni(111) surface (10, 11). Depending on
the preparation conditions, a second coex-
isting structure can be found in which the B
atoms are placed in hexagonal close-packed
adsorption sites. Wherever domains of
these different structures coalesce, straight
defect lines are observed in scanning tun-
neling microscopy (STM) images (12). Al-
though all these studies illustrated the mod-
el character of this weakly physisorbed
metal-insulator interface, they did not raise
expectations for these systems to exhibit
self-organization into complex structures
on a nano- to mesoscopic-length scale.
Here, it is shown that such self-organization
within the h-BN layer takes place when depos-
ited on Rh(111), where the lattice mismatch of
6.7% produces a high tensile stress.

The preparation procedure consists of
exposing the atomically clean Rh(111) sur-
face, which is kept at a temperature of 1070
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