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Abstract thesetuple-level uncertainty modef§, 17, 19, 12, 29], that
associate existence probabilities with tuples, are considered
Probabilistic databases have received considerable at- more attractive for various reasons: (a) they typically re-
tention recently due to the need for storing uncertain data sult in relations that are in 1NF, (b) they provide simple
produced by many real world applications. The widespread and intuitive querying semantics, and (c) they are easier to
use of probabilistic databases is hampered by two limita- store and operate on. However, these models often make
tions: (1) current probabilistic databases make simplistic simplistic and highly restrictive assumptions about the data
assumptions about the data (e.g., complete independencée.g., complete independence among base tuples [19, 12]).
among tuples) that make it difficult to use them in applica- In particular, they cannot easily model or handépenden-
tions that naturally produce correlated data, and (2) most cies/correlations among tuples. The ability to do so is crit-
probabilistic databases can only answer a restricted subsetical for two reasons:
of the queries that can be expressed using traditional queryNatural dependencies in the data:Many application do-
languages. We address both these limitations by propos-mains naturally produce correlated data. For instance, data
ing a framework that can represent not only probabilistic integration may result in relations containing duplicate tu-
tuples, but also correlations that may be present among ples that refer to the sansmtity, such tuples must be mod-
them. Our proposed framework naturally lends itself to eled asmutually exclusivgs, 1]. Real-world datasets such
the possible world semantics thus preserving the preciseas the Christmas Bird Count [14] naturally contain com-
query semantics extant in current probabilistic databases. plex correlations among tuples. Data generated by sensor
We develop an efficient strategy for query evaluation over networks is typically highly correlated, both in time and
such probabilistic databases by casting the query process-space [16]. Data produced through use of machine learn-
ing problem as arinferenceproblem in an appropriately  ing technigues (e.g. classification labels) typically exhibits
constructedorobabilistic graphical modeMe present sev-  complex correlation patterns.
eral optimizations specific to probabilistic databases that Dependencies during query evaluation:The problem of
enable efficient query evaluation. We validate our approach handling dependencies among tuples arises naturally dur-
by presenting an experimental evaluation that illustrates the ing query evaluatiomven when one assumes that the base
effectiveness of our techniques at answering various queriesiata tuples are independe($ection 2.1). In other words,
using real and synthetic datasets. the independent tuples assumption is not closed under the
relational operators, specificallgin [19, 12].
Past work on tuple-level uncertainty models has ad-
1 Introduction dressed this problem by either restricting the set of queries

. that can be evaluated against such a database
Database research has primarily concentrated on how to g tatp

) plans[12]), or by restricting the dependencies that can be
store an_d quergxactdata. This has led to the development modeled (e.gProbView[29]). Neither of these approaches,
of techniques that allow the user to express and efficiently

. . . however, is satisfactory for a large class of real-world appli-
process complex queries in a declarative fashion over large

. .“"cations.
collections of data. Unfortunately, many real-world appli- In this paper. we proposaaple-level uncertainty model
cations produce large amounts wicertaindata. In such baper, broposetap y

. built on the foundations of statistical modeling techniques
cases, databases need to do more than simply store and re:- . 2
o . . at allows us to uniformly handle dependencies in the data,
trieve; they have to help the user sift through the uncertainty

and find the resultmost likelyto bethe answer. while keeping the basic probabilistic framework simple and

Nl-!me".ous approaches have been proposed to handle Un- 1rrom here onwards, we use the terms “dependencies” and “correla-
certainty in databases [2, 7, 16, 6, 17, 19, 12, 29]. Among tions” interchangeably.




DP pwd(D?) Evaluation

instance probability query result pwd(D?) probability

SP di1 = {s1,s2,t1} 0.12 {p} instance | ind. | implies | mut. ex.| nxor

A'| B | prob do = {s1,52} 0.18 0 d1 0.12 0 0 0.2
s1|m| 1| 06 ds = {s1,t1} 0.12 {p} da 0.18 0.5 0.3 0.1
s2 | n| 1| 05 dy={s1} 0.18 0 ds 012 0 0 0.2
ds = {82,t1} 0.08 {p} dy 0.18 0.1 0.3 0.1

T ds = {s2} 0.12 0 ds 008 0 0.2 0

C | D | prob d7 = {t:1} 0.08 0 de 0.12 0 0 0.2

tw] 1] p| 04 ds =0 0.12 0 dy 0.08| 0.4 0.2 0
ds 0.12 0 0 0.2

0] (it) (iii)
0]
Result
D prob D ind. | implies | mut. ex.| nxor
p | prob(d;) + probs) + probis)= 0.32 p 0.32] 0.00 0.20 | 0.40

[ prob(d:) + prob(,) + prob(ds) +prob(-) + probs)= 0.68
(iv) (i)

Figure 1. Example reproduced with minor changes from [12]: (i) A proba- Figure 2. (i) pwd(DP?) for various depen-
bilistic database with independent tuples; (ii) corresponding possible worlds; dencies and the (ii) corresponding query re-
(iii) evaluating [, (S? xB=c T7) over pwd(D?); (iv) computing result sults.

probabilities.

intuitive. The salient features of our proposed approach,2 Background

and our main contributions are as follows: 2.1 Independent Tuples Model [19, 12]

* We propose a uniform framework for expressing uncer-  one of the most commonly used tuple-level uncertainty
tainties and dependencies through use of random_vari—mode|sy theéndependent tuples modgl9, 12], associates
ables and joint probability distributions. Unlike prior  eyistence probabilities with individual tuples and assumes
approaches, our proposed model is closed under relathat the tuples are independent of each other. Figure 1 (i)
tional algebra operations. shows an example of such a databaBé, with relations

e We cast query evaluation on probabilistic databases asS? (containing tupless;; and s, with probabilities 0.6 and
an inferenceproblem in probabilistic graphical mod- 0.5 resp) and™ (containing tuple; with probability 0.4).
els and develop techniques for efficiently constructing Such a probabilistic database can be interpreted as a
such models during query processing. This allows us to probability distribution over the set of all possible determin-
choose from various inference algorithms (exact or ap- istic database instances, calleassible world§denoted by
proximate) for query evaluation, depending on our re- pwd(D)) [25, 19, 12]. Each deterministic instance (world)
quirements of accuracy and speed. contains a subset of the tuples present in the probabilistic

« We develop several optimizations specific to probabilis- database, and the probability associated with it can be calcu-
tic databases resulting in efficient query execution in lated directly using the independence assumption (by multi-
spite of the rich dependency modeling that we allow.  Plying together the existence probabilities of tuples present

: : in it and non-existence probabilities of tuples not present in
We present experimental results from a prototype imple- . . . :
* P P P P P it). Figure 1 (ii) shows all the possible worlds fér* and

mentation over several real and synthetic datasets tha heir associated probabilities. For example, the probability
demonstrate the need for modeling and reasoning aboumc dy = {51, 5} i computed 88.6x0.5 (1—0.4) = 0.18.

dependencies and the efficacy of our techniques at eval- _ . o
b 4 q This possible worlds interpretation lends highly intuitive

uating various queries including aggregate operators. and precise semantics for query evaluation over probabilis-

We begin with some background on tuple-level uncer- tic databases. Lej be a query issued on a probabilistic
tainty models and probabilistic graphical models (Section databaseD?. We evaluate such a query against each pos-
2). We then present our proposed model for representingsible world in pwd(DP?) separately, thus resulting in an-
correlated data (Section 3), discuss implementation issueother set of fesul) possible worlds (with the same asso-
4) and present an experimental evaluation over a prototypeciated probabilities). The final result is obtained by taking
implementation (Section 5). Finally, we discuss related a union of all theresult possible worlds, and by associat-
work in Section 6, and conclude in Section 7. ing a probability with each tuple in them to be the sum of



the probabilities of theesult possible worlds that contain
it. For instance, Figure 1 (iii) shows the results of execut- Pr(X1 =21, Xo = 22, X3 = 23) =

ing [ [ (SP xig—c T?) on each possible world dd” and fi(X1 = 21) fr2(X1 = 21, X2 = 22) f23(X2 = x2, X3 = 23)
Figure 1 (iv) shows the final probability computation.

Evaluating a query via the set of possible worlds is :v01 | ({16 xol "”02 | Q; m02 xg | éQ;
clearly intractable as the number of possible worlds is ex- 1 0'4 0 1 0'1 0o 1 0'3
ponential in the number of tuples contained in the database. ' 1 0 o1 1 0lo3
Previous literature [19, 12] has suggested two query eval- 1 1109 1 1107

uation strategies instead, callextensionabkndintensional

semantics. Intensional semantics guarantee results in accor- @
dance with possible worlds semantics but are computation-
ally expensive. Extensional semantics, on the other hand,
are computationally cheaper but do not guarantee results in
accordance with the possible worlds semantics. This is be-
cause, even if base tuples are independent of each other, the
intermediate tuples that are generated during query evalua-
tion are typically correlated. For instance, in Figure 1, the
join operation if performed before the projection results in
two intermediate tuples; t; andssytq, that are not indepen-
dent of each other as they share
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2.2 Tuple Correlations
As we discussed in Section 1, tuple correlations also oc-Figure 3. Example involving three dependent random vari-
cur naturally in many application domains, and ignoring ables each with a binary domain: (i) factored representation
such correlations can result in highly inaccurate and unintu- (i resultlng_jomt probability distribution (iii) graphical model
itive query results. representation.

Consider the four sets of possible worlds shown in Fig- ¢rrelated random variables [31, 10]. The key idea underly-
ure 2 (i) derived from the same database shown in Figure 1ing these approaches is the usdaiftored representations
(i), but containing different sets of dependencies that we ¢, modeling the correlations.
mlg.ht want to represent: _ Let X denote a random variable with a domdinm (X))

1. ind.: wheresy, s5, andt, are independent of each other. and letPr(X) denote a probability distribution over it.

2. implies presence of; implies absence of; and s, Similarly, let X = {X;, X5, X3...,X,,} denote a set
(t1 = —s1 A —8). of n random variables each with its own associated domain

dom(X;), and Pr(X) denote the join probability distribu-

3. mutual exclusivitymut. ex): t; = —s; ands; = —ity. ;
tion over them.

4. nxor. high positive correlation between ands;, pres-
ence (absence) of one almost certainly implies the pres-Definition 2.1. A facto? f(X) is a function of a (small)
ence (absence) of the other. set of random variableX = {X;,..., X, } such that) <

Figure 2 (i) shows the result of applying the example query /(X =x) < 1Vx € dom(X1) x ... x dom(Xy).
from Figure 1 to these four possible worlds. As we can
see, although the tuple probabilities associated withss
andt; are identical, the query results are drastically dif-
ferent across these four databases. Note that, since both i

the approaches (intensional and extensional semantics) dis- Pr(X=x)= H fi(Xi = xi) @)
cussed in the previous section assume base tuple indepen- =1

dence, neither can be directly used to do query evaluationwhereX; C X is the set of random variables restricted to

A factored representation @fr(X) allows the distribu-
tion to be represented compactly as a product of factors:

in such cases. factor f; andx; is the corresponding assignment. Figure 3
shows a small example of a factored representation of a joint
2.3 Probabilistic Graphical Models and probability distribution over three random variables.
Factored Representations Computingmarginal probabilitiesis a common opera-

Probabilistic graphical modelform a powerful class of ~ tion when dealing with such joint probability distributions.
approaches that can CompaCtly_ reprgsent and reason about 2Factors can be seen as a generalizatiocootitional probability ta-
complex dependency patterns involving large numbers ofblesin Bayesian networks [31].
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Figure 4. Representing probabilistic databases with dependencies (examples from Figure 2): (i) “implies” dependency; (i) “mut.
ex.” dependency; (jii) “nxor” dependency. fi™%(X,,) and fi’*(X,,) refer to the independent tuple factors fort; and s..

s2

It falls under the general class of operations knowim#es-
ence Given a random variabl& € X and an assignment
x € dom(X), the marginal probability computation prob-
lem from the joint distributionPr(X) is:

Pr(X =z)=)» Pr(X=x) 2

wherex ~ z denotes an assignmentXothat agrees with
X = z andx is a valid assignment tX. We will discuss
inference techniques in Section 4.1.

3 Proposed Approach

We now describe how to represent dependencies in prob

probability of an instance can be computed by computing
the joint probability of the assignment ¥, which can in
turn be obtained by multiplying all factors defined on the
tuple-based random variables in the database (Eq. (1)).

Example: Representing Independent Tuples.

We illustrate our approach by expressing the probabilistic
database in Figure 1 (i) (with three independent tuples) in
our formulation. This can be achieved by defining one fac-
tor per independent tuple:

X81 ‘ ;?d X52 ‘ ;;Ld Xt1 ‘ ftllnd
0 04 0 0.5 0 0.6
1 0.6 1 0.5 1 0.4

To compute the probability for an instance we multiply
these factors. For instance:

abilistic databases through the use of factors and random
variables. We then consider the query evaluation problem pr(d, ={s;,s5}) = Pr(X,, = 1,X,, =1, X;, = 0)

over such databases, and begin by presenting an example _ ind
that grounds the basic ideas underlying our approach. We s

then follow up with a more detailed description of the over-
all query evaluation procedure.

3.1 Representing Dependencies

Lett denote a tuple belonging to relatidhsuch that is
a mapping from attributes iR to constants. In our frame-
work, every tuple is associated with a unique boolean val-
ued random variabl&, where0 representfalse and1
representsrue .

A probabilistic relationR consists of a set of tuples with
their corresponding random variables angbrababilistic
databaseD consists of a collection gbrobabilistic rela-
tions We refer to the collection of all the random variables
associated with tuples in the probabilistic databh@dsy the
symbolXp.

Each instance ipwd(D) can now be expressed as a
complete assignment to the set of random variaklgsde-
noted byxp € {0,1}X»l. For exampleds in Figure 2 (i)
corresponds to the assignmeny, =1, X,, =1, X;, =0.

(X,
= 0.6 x 0.5 x 0.6 = 0.18

= 1) fI (X, = 1) f{"(Xs, =0)

52

Figure 4 shows the factored representations for the other
three probabilistic databases in Figure 2 (i).

3.2 Query Evaluation: Example

We begin our discussion on query evaluation by present-
ing a small example. Consider the database shown in Fig-
ure 2 (i) with the “nxor” dependency (Figure 4 (iii)). Fig-
ure 5 describes the execution[df, (S? >xg—c T7) on this
database.

Consider the intermediate tuples introduced during the
execution of this query. The tuplés andi,, produced by
the join (Figure 5), are clearly uncertain tuples since they
are not produced in every instance of the database. Simi-
larly, the result tupler; is also a probabilistic tuple. Let us
take a closer look at the inter-tuple dependencies:

e i, is produced by possible worldiff d contains boths,
andt1 (i.e.,51 Nt & Zl)

We can now represent dependencies by defining factors ® Similarly, sy Aty < is.
on the tuple-based random variables in the database. Thee Finally, r; is produced iff eithei; or i, is produced.
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the logicaland of the last two arguments (see Figure 6
(i) for the full definition of f2"¢ . ).

11,81,t1

Faxpg )= X 0, X0, X )UF g ()UF 1 (t)

Figure 7. Definitions for relational algebra operators.

o fOR . returnsl when the first argument is the logical-
or of the last two arguments (Figure 6 (ii)). if X; holds true. This is enforced by @guals factor
Consider the factored probability distribution induced by ~ that takes arguments,. and X, and returnd whenever
this query, i.e. the product of all the factors introduced in- X = X and0 o.w.
cluding the factors among the base tuples. It turns out that e join (xP): Let tuplest andt#’ join to return new tuple-.
the marginal probability oPr(X,, = 1) returns the correct Inthis case, as we saw in the examptg,will hold true
answer0.40 matching the number in Figure 2 (ii). in possible worldd if and only if both X; and X hold
true. This can be enforced with tlamd factor that we
3.3 Query Evaluation: Details introduced in the example (Figure 6 (i)).
3.3.1 Generating factors during query evaluation o project([ [} ): Lettuplesty, .. .., project to form new
tuple r. In this case X, holds true in possible world
The query evaluation procedure presented through the ex- g if at least one ofXy,,..., X;, hold true ind. This

ample above requires that we encode dependencies among  can be enforced with a straightforward generalization of
(intermediate) tuples by introducing factors. We now rede-  theor factor, introduced in the example (Figure 6 (ii)),
fine the three operators [ [, x to produce factors express- or (X, Xy,,... X, ) that returns 1 if the first ar-

ing such dependencies. Let us denote the new operators by gument is the logicabr of the lastn arguments.
P, TT?, xP where the superscript emphasizes that they are

operators for probabilistic databases. We will assume that
our queryqg does not contain two copies of the same rela-
tion and consists of only the above three operators. In the
longer version of the paper [34] we describe redefinitions
for all relational algebra operators that do not make these
assumptions and can handle all relational algebra queries.

e select ¢P): Supposer? operator with predicate acts
on tuplet and produces new tuplg(both tuples contain- ~ We now justify our approach of generating factors for query
ing the same mapping attribute-value mappings). Thereevaluation. LetPr,(t) denote the probability associated
are two cases to consideritloes not satisfy the pred- with result tuplet produced by query; issued on the
icatec, thenr cannot be produced and this is enforced databaseé). Thus from possible world semantics:
by afalse factor onX, that returnd if X,. = 0 and0
whenX, = 1. The other case is wheérsatisfies: and in Pry(t) = Z P(Xp =x)
this case X, holds true in possible world if and only x€{0,1} XD trg(x)

Figure 7 defines the above operators in functional represen-
tation whereF,(t) denotes the set of factors required to
generate tuple inductively on query plary and Figure 7
describes how we generate factors for a particular téple
and add them t&F,(¢).

3.3.2 Formulating the Query Evaluation Problem
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Figure 8. (i) Marginal probability computation for X3 using variable elimination on the distribution shown in Figure 3. (ii) Trans-
forming a graphical model using decomposability (iii) Partitions for the “nxor” dependency shown in Figure 2 (i) with the partitions
introduced by the join shown in Figure 5.

wheret ~ ¢(x) is true if ¢ is included in the result of known asbucket elimination[37, 15] is an exact inference
applied to possible worlst. algorithm that has the ability to exploit this structure. VE

Let X; denote the random variable associated wite can be used to compute the marginal probabilities of a sin-
would like to express the above computation as a marginalgle random variable from a joint distribution. The main ad-
probability computation problem on an appropriate distri- vantages of VE are simplicity and generality.

bution Pr(X p, X;) such that: Computing the marginals of a random variabfere-
quires that we sum out all the other random variables
Pryt)= Y Pr(Xp=xX,=1) present in the joint distribution (Eq. (2)). Figure 8 (i) shows
xe{0,1}*p! how VE computes the marginal probability corresponding

to X3 = a3 for the joint distribution described in Figure 3.

wherePr(Xp, X,) satisfies: In Figure 8 (i) we first sum ovekX; producing a new factor

Pr(Xn =x) ift~alx 11 (X>2) and then sum oveK, producing a factojs (X3)
PrXp=x,X;=1)= { ( g ) o.vs.( ) from which we can retrieve the required result.
3) The complexity of VE depends on some natural parame-

It is easy to show that by introducing factors that main- ters relating to the connectivity of the graph underlying the
tain dependencies for the tuples generated by the quenygraphical model corresponding to the joint probability dis-
we will, in fact, construct a joint distribution that satisfies {ribution [33]. The inference problem is easy if the graph-
Eq. (3) (see [34] for full derivation). Computing the result ical model is or clqsely resembles a tree apd the problerr_l
from this distribution is thus a matter of computing marginal Pecomes progressively harder as the graphical model devi-

probabilities that requires inference in probabilistic graphi- ates more from being a tree. Interestingly, in the context of
cal models. probabilistic databases with independent base tuples, Dalvi

and Suciu [12] identified a class of queries that allow ef-
. ficient evaluation (queries withafe plang In the longer

4 Query Execution version of the paper [34], we show that safe plans give rise

In this section, we provide further details as to how we tg inference problems with tree-structured graphical models
execute queries in probabilistic databases with dependenwhere running inference is easy.
cies. We begin with a description of variable elimination,  another possible reason for inference being difficult is
the inference algorithm used in our current implementation, dye to the presence of factors involving a large number of
and discuss various optimizations to perform variable elim- \andom variables. Projection and aggregate operations can
ination efﬁciently. After tha.t we diSCUSS WayS to store pI’Ob— produce |arge factors but we can eas“y reduce the Size Of

abilistic databases with correlated tuples. these factors by exploitingecomposability38, 33]. This
. . allows us to break any large projection factor into numer-
4.1 Inference in Graphical Models ous (linear in the number of tuples involved in the projec-

Exact probabilistic inference is known to be NP-hard in tion) constant-sized 3-argument factors. Figure 8 (ii) shows
general [9]. However, many applications provide graphi- the pictorial representation of this optimization. The top
cal models with a graph structure that allow efficient prob- graphical model representstuples projecting into one re-
abilistic computation [37]. Variable elimination (VE), also sult tuple producing a large factor. The bottom graphical



model shows the transformed graphical model that containscompute the marginal probabilities for each part separately.
n—1 new random variables and consists of only 3-argument The probabilities from the various parts can be combined
factors. All aggregate operators (e.sum, max etc.) are  easily since we know they are independent. A simple search
also decomposable with the exceptiorasfy . To compute  for connected components can be used to determine these
avg, we first computesum andcount , both of which are  independent parts where we start with a graph of tuple ref-

decomposable, and then compute the average. erences collected from the various partitions and each ref-
erence is connected to all other references within the same
4.2 Representing Probabilistic Relations partition via edges. As part of our future work we aim to

use external memory graph algorithms [36] for these tasks.
When exact probabilistic inference turns out to be too
gxpensive we have the flexibility of switching to approxi-
mate inference techniques depending on the user’s require-
ments. Just like exact inference, approximate inference is

Earlier approaches represented probabilistic relations by
storing uncertainty with each tuple in isolation. This ap-
proach is inadequate for our purposes since the same tupl
can be involved in multiple dependencies. In our implemen-
tation, we store the data and uncertainty parts separately

The tuples are stored as part of relations. To store uncer-élISO known to be NP-hard [11]. However there exist a fairly

tainty, we introduce the concept opartition. A partition large varie_ty of appro_ximate ?nference algorithms ‘h?‘t per-
consists of a factor and a set ofeferencedgo the tuples form well in practice in a variety of cases each varying in
whose random variables form the arguments to that fac- speed and accuracy e.g., Markov Chain Monte Carlo tech-

tor. Besides, each tuptein a relation also contains a list of niques [23], Variational Methods [28] etc.

pointers to the partitions that contain references to the tuple. )

The relations and partitions together form a doubly-linked © EXperimental Study

data structure so that we can move from one to the other. In this section, we present an experimental evaluation
Figure 8 (iii) shows the arrangement of relations and parti- demonstrating the need for modeling tuple correlations, and
tions for the database with the “nxor” dependency (Figure 4 the effectiveness of our techniques at modeling such corre-
(iii)) where dotted lines represent the pointers from tuples lations and evaluating queries over them. This evaluation

to partitions and solid lines show the references. was done using a prototype system that we are currently
building on top of the Apache Derby Java DBMS [26]. Our
4.3 Query Execution Steps system supports the query execution strategies discussed in

the previous section.

Following Fuhr et al [19] and Dalvi et al [12], we gen-
erate probabilistic relations by issuisgnilarity predicates
over deterministic relations. Briefly, given a predicate of
the form R.a =~ k, wherea is a string attribute, anél is a
2. Perform early projectionsWe also push down as many  string constant, the system assigns a probability to each tu-

projections as possible. ple ¢, based on howimilar t.a is to k. Following the prior
3. Join phaseln this phase, we perform all the join opera- work [12], we compute th&-gram distancd35] between

tions and perform them as part of one multi-join opera- t.a and k, and convert it to a posterior probability by as-
tion, creating partitions and intermediate relations (Fig- suming that the distance is normally distributed with mean
ure 8 (iii) shows the partitions introduced due to a join 0, and variancer (o is a parameter to the system). The

Here is a brief sketch of the steps we follow for SPJ
queries:
1. Perform early selectiondNVe push down and execute as
many selections as possible.

operation on the database shown in Figure 4 (iii)). details can be found in [12].
4. Perform final projectionHere we project onto the result . .
attributes specified by the user in the query. 5.1 Need for Modeling Dependencies

Consider apublicationsdatabase containing two rela-
tions: (1)PUBS(PID, Title) , and (2Y AUTHS(PID,
Name), where PID is the unique publication id, and con-
sider the task of retrieving all publications with titjewrit-
ten by an author with name Assuming that the user is not
sure of the spellings andy, we might use the following

guery to perform the above task:
The memory required to hold all partitions to compute
probability for result tuple may exceed available memory. Hrine(ONamens (AUTHS) 9 07 isieny (PUBS))
To alleviate this problem we further divide the joint distri- As discussed above, the similarity predicates will cause
bution forr into many independent parts such that no tuple both the relations to be converted into probabilistic rela-
reference from partis involved in partj, wherei # j, and tions, AUTHS and PUBS. However, note thaAUTHS

5. Probability computation For each result tuple, we re-
cursively collect all partitions required to perform infer-
ence and compute the required marginal probability.

We refer the interested reader to [34] for full details.

4.4 Further Optimizations



Title Title

Reinforcement learning with hidden states (by L. Lin, T. Mitchell) | Reinforcement learning with hidden states (by L. Lin, T. Mitchell)

Feudal Reinforcement Learning (by C. Atkeson, P. Dayar), Feudal Reinforcement Learning (by C. Atkeson, P. Dayar),
Reasoning (by C. Bereiter, M. Scardamalia) Reasoning (by C. Bereiter, M. Scardamalia)

(i) MUTEXDB results atr = 10, 50, 100 (ii) IND_DB results atr = 10
Title Title

Decision making and problem solving (G. Dantzig, R. Hogarth),
HERMES: A heterogeneous reasoning and mediator system (by S.
Adali, A. Brink, .. .)

Induction and reasoning from cases (by K. Althoff, E. Auriol,)

Feudal Reinforcement Learning (by C. Atkeson, P. Dayar),
Decision making and problem solving (G. Dantzig, R. Hogarth),
Multimodal Learning Interfaces (by U. Bub, R. Houghton,)

(iii) IND_DB results ab = 50 (iv) IND_DB results atr = 100

Figure 9. Top three results for a similarity query: (i) shows results fromMUTEXDB; (ii), (iii) and (iv) show results from IND_DB.

contains natural mutual exclusion dependencies with re-sults. MUTEX DB assigns these possible worlds zero prob-
spect to this query. Since the user is looking for publications abilities by modeling dependencies on the base tuples.

by a single author with name, it is not possible forz to We would like to note that, although setting the value of
match twoAUTHS tuples corresponding to the same pub- o carefully may have resulted in a good answerniid_DB
lication in the same possible worl@hus, any twWAUTHS in this case, choosing is not easy in general and depends

tuples with the samBID exhibit a mutual exclusion depen- on various factors such as user preferences, distributions of
dency, and a possible world containing both of them should the attributes in the database etc [12]. Modeling mutual
be assigned zero probability. exclusion dependencies explicitly using our approach nat-
To illustrate the drawbacks of ignoring these mutual ex- urally alleviates this problem.
clusion dependencies, we ran the above query with
“T. Michel” and y = “Reinforment Leaning hiden stat” on 5.2 Scalability
two probabilistic databases, one assuming complete inde-  Next we study the scalability of our proposed query exe-
pendence among tuplefN_DB) and another that models  cyion strategies using a randomly generated TPC-H dataset
the dependenciesdUTEXDB). We ran the query on an s sjze 10MB. For simplicity, we assume complete indepen-
extraction of 860 publications from the real-world CiteSeer yence among the base tuples (though the intermediate tuples
dataset [22]. We report results across various settings of may still be correlated).
Figure 9 shows the top three results obtained from the  Figure 10 (ii) shows the execution times on TPC-H
two databases at three different settingsrdfve also list gueries Q2 to Q8 (modified to remove the top-level aggre-

the author names to aid the reader’s understandity)- gations). The first bar on each query indicates the time it
TEXDB returns intuitive and similar results at all three val- took for our implementation to run the full query including
ues ofs. IND_DBreturns reasonable results onlyat 10, all the database operations and the probabilistic computa-

whereas ab = 50, 100 it returns very odd results (“Deci- tions. The second bar on each query indicates the time it
sion making and problem solving” does not match the string took to run only the database operations using our Java im-
“Reinforment Leaning hiden stat” very closely and yet itis plementation. Here are the summary of the results:
assigned the highest rankat= 100). Figure 10 (i) shows 4 Aswe can see in Figure 10 (ji), for most queries the ad-

the cumulative recall graph fdND_DB for various values ditional cost of probability computations is comparable

of o, where we plot the fraction of the tofy results re- to the cost of normal query processing.

turned byMUTEX DB that were present in the taly re- e The two exceptions are Q3 and Q4 which severely tested

sults returned byND DB. As we can see, at = 50 and our probabilistic inference engine. By removing the ag-

100, IND_DB exhibits poor recall. gregate operations, Q3 resulted in a relation of size in
Figure 9 shows thatND_DB favors publications with excess of 60,000 result tuples. Although Q4 resulted in

long author lists. This does not affect the results at low a very small relation, each result tuple was associated
values ofs (=10) because, in that case, we use a “peaked”  with a probabilistic graphical model of size exceeding
gaussian which assigns negligible probabilities to possible 15,000 random variables. Each of these graphical mod-
worlds with multipleAUTHS from the same publication. els are fairly sparse but book-keeping for such large data
At larger settings otr, however, these possible worlds are structures took a significant amount of time.

assigned larger probabilities atdD_DB returns poor re- e Q7 and Q&are queries without safe plans [12] yet their
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Figure 10. (i) Cumulative recall graph comparing results ofIND_DB and MUTEXDB for ¢ = 10, 50, 100. (ii) Run-times on TPC-H
data. (iii) AVGaggregate computed over 500 randomly generated tuples with attribute values ranging from 1 to 5.

run-times are surprisingly fasBy taking a closer look  whether the correlations typically present in real-world data
we notice that both these queries gave rise to tree struc-can be modeled. Barbara et al [2] propose an approach that
tured graphical models justifying our belief that there associates probabilities with attributes and can model arbi-
are queries that lend to efficient probabilistic inference trary correlations between attributesthin a single tuple

even though they might not have safe plans. However the resulting relations are not in 1INF and further
the semantics of some of the query operators are messy,
5.3 Aggregate Operations both of which seriously limit the applicability of their ap-

Our system also naturally supports efficient computation Proach. More recently, Choenni et al [8] discuss concep-
of a variety of aggregate operators over probabilistic rela- tually how to make the query semantics more consistent
tions; details can be found the longer version of the pa- through use of Dempster-Schafer theory.
per [34]. Figure 10 (iii) shows the result of running aver-
agequery over a synthetically generated dataset containing Cavallo et al [6] and Dey et al [17] propose and study
500 tuples. As we can see, the final result can be a fairly lUPI€-level uncertainty models that explicitly capturei-
complex probability distribution, which is quite common (U@l exclusivity More recently, Andritsos et al [1] use a
for aggregate operations. Effective computation of aggre- Similar basic model to capturérty data, and develop query
gates over large probabilistic databases is an open researchvaluation algorithms for the same. In a series of papers,

problem that we plan to study in future. Fuhr and Rolleke [19] propose using tuple-level probabil-
ities to model uncertain data information retrievalcon-

text, and present the intensional and extensional query eval-
6 Related Work uation techniques discussed in Section 2. Extending this
The database community has seen a lot of work onwork, Dalvi and Suciu [12, 13] defingafe query planso
managing probabilistic, uncertain, incomplete, and/or fuzzy pe those for which extensional and intensional query evalu-
data in database systems (see e.g. [32, 27, 2, 29, 30, 24, 1%tion produces identical results, and show how to generate
5, 7,12, 4]). With a rapid increase in the number of appli- a safe query plan for a query if one exists. Tuple indepen-
cation domains such as data integration, pervasive computdence is assumed for most of the work by both these groups.
ing etc., where uncertain data arises naturally, this area has akshmanan et al [29] attempt to combine these different
seen renewed interest in recent years (see [20] for a surveypproaches by associatipgbability intervalswith tuples
of the ongoing research). From the uncertainty in artificial in their ProbViewsystem. Their model also supports vari-

intelligence community, Friedman et. al [18] (PRM) ad- ous conjunction and disjunctisirategieshat allow a lim-
dress the problem of learning a probabilistic model from jted encoding of tuple interdependences.

a given database. While PRMs can represent uncertainty

in databases, Getoor et. al. [21] explore the application of Cheng et al [7] associate (continuous) probability distri-

PRMs to answering selectivity estimation queries but not butions with attributes, and propose several query evalua-

gueries expressed in standard database languages. tion and indexing techniques over such data. Trio [14, 3]
We will briefly discuss some of the closely related work aims to provide a unified treatment data uncertaintyby

in the area ofprobabilistic data management. Previous studying the issues of completeness and closure under var-

work in this area can be differentiated based on (a) whetherious alternative models for representing uncertainty. Their

probabilities are associated wititributesor with tuples recent work [3] combinedata lineageanddata accuracyn

(b) whether the resulting relations are in the first normal a single system by tracking lineage of tuples derived from

form (which is highly desirable given the complexity of other tuples. However, they do not consider duplicate elim-

managing and querying data which is not in 1NF), and (c) ination and aggregation, among other operations.
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