
Representing and Querying Correlated Tuples in Probabilistic Databases

Prithviraj Sen Amol Deshpande

Department of Computer Science, University of Maryland, College Park, MD 20742.
E-mail:{sen, amol }@cs.umd.edu

Abstract

Probabilistic databases have received considerable at-
tention recently due to the need for storing uncertain data
produced by many real world applications. The widespread
use of probabilistic databases is hampered by two limita-
tions: (1) current probabilistic databases make simplistic
assumptions about the data (e.g., complete independence
among tuples) that make it difficult to use them in applica-
tions that naturally produce correlated data, and (2) most
probabilistic databases can only answer a restricted subset
of the queries that can be expressed using traditional query
languages. We address both these limitations by propos-
ing a framework that can represent not only probabilistic
tuples, but also correlations that may be present among
them. Our proposed framework naturally lends itself to
the possible world semantics thus preserving the precise
query semantics extant in current probabilistic databases.
We develop an efficient strategy for query evaluation over
such probabilistic databases by casting the query process-
ing problem as aninferenceproblem in an appropriately
constructedprobabilistic graphical model. We present sev-
eral optimizations specific to probabilistic databases that
enable efficient query evaluation. We validate our approach
by presenting an experimental evaluation that illustrates the
effectiveness of our techniques at answering various queries
using real and synthetic datasets.

1 Introduction
Database research has primarily concentrated on how to

store and queryexactdata. This has led to the development
of techniques that allow the user to express and efficiently
process complex queries in a declarative fashion over large
collections of data. Unfortunately, many real-world appli-
cations produce large amounts ofuncertaindata. In such
cases, databases need to do more than simply store and re-
trieve; they have to help the user sift through the uncertainty
and find the resultsmost likelyto bethe answer.

Numerous approaches have been proposed to handle un-
certainty in databases [2, 7, 16, 6, 17, 19, 12, 29]. Among

these,tuple-level uncertainty models[6, 17, 19, 12, 29], that
associate existence probabilities with tuples, are considered
more attractive for various reasons: (a) they typically re-
sult in relations that are in 1NF, (b) they provide simple
and intuitive querying semantics, and (c) they are easier to
store and operate on. However, these models often make
simplistic and highly restrictive assumptions about the data
(e.g., complete independence among base tuples [19, 12]).
In particular, they cannot easily model or handledependen-
cies/correlations1 among tuples. The ability to do so is crit-
ical for two reasons:
Natural dependencies in the data:Many application do-
mains naturally produce correlated data. For instance, data
integration may result in relations containing duplicate tu-
ples that refer to the sameentity; such tuples must be mod-
eled asmutually exclusive[6, 1]. Real-world datasets such
as the Christmas Bird Count [14] naturally contain com-
plex correlations among tuples. Data generated by sensor
networks is typically highly correlated, both in time and
space [16]. Data produced through use of machine learn-
ing techniques (e.g. classification labels) typically exhibits
complex correlation patterns.
Dependencies during query evaluation:The problem of
handling dependencies among tuples arises naturally dur-
ing query evaluationeven when one assumes that the base
data tuples are independent(Section 2.1). In other words,
the independent tuples assumption is not closed under the
relational operators, specificallyjoin [19, 12].

Past work on tuple-level uncertainty models has ad-
dressed this problem by either restricting the set of queries
that can be evaluated against such a database (e.g.safe
plans [12]), or by restricting the dependencies that can be
modeled (e.g.ProbView[29]). Neither of these approaches,
however, is satisfactory for a large class of real-world appli-
cations.

In this paper, we propose atuple-level uncertainty model
built on the foundations of statistical modeling techniques
that allows us to uniformly handle dependencies in the data,
while keeping the basic probabilistic framework simple and

1From here onwards, we use the terms “dependencies” and “correla-
tions” interchangeably.

Dp

Sp

A B prob
s1 m 1 0.6
s2 n 1 0.5

T p

C D prob
t1 1 p 0.4

pwd(Dp)
instance probability

d1 = {s1, s2, t1} 0.12
d2 = {s1, s2} 0.18
d3 = {s1, t1} 0.12
d4 = {s1} 0.18
d5 = {s2, t1} 0.08
d6 = {s2} 0.12
d7 = {t1} 0.08
d8 = ∅ 0.12

Evaluation
query result

{p}
∅
{p}
∅
{p}
∅
∅
∅

(i) (ii) (iii)

Result
D prob
p prob(d1) + prob(d3) + prob(d5)= 0.32
∅ prob(d2) + prob(d4) + prob(d6) +prob(d7) + prob(d8)= 0.68

(iv)

Figure 1. Example reproduced with minor changes from [12]: (i) A proba-
bilistic database with independent tuples; (ii) corresponding possible worlds;
(iii) evaluating

∏
D(Sp ./B=C T p) over pwd(Dp); (iv) computing result

probabilities.

pwd(Dp) probability
instance ind. implies mut. ex. nxor

d1 0.12 0 0 0.2
d2 0.18 0.5 0.3 0.1
d3 0.12 0 0 0.2
d4 0.18 0.1 0.3 0.1
d5 0.08 0 0.2 0
d6 0.12 0 0 0.2
d7 0.08 0.4 0.2 0
d8 0.12 0 0 0.2

(i)

D
p

ind. implies mut. ex. nxor
0.32 0.00 0.20 0.40

(ii)

Figure 2. (i) pwd(Dp) for various depen-
dencies and the (ii) corresponding query re-
sults.

intuitive. The salient features of our proposed approach,
and our main contributions are as follows:

• We propose a uniform framework for expressing uncer-
tainties and dependencies through use of random vari-
ables and joint probability distributions. Unlike prior
approaches, our proposed model is closed under rela-
tional algebra operations.

• We cast query evaluation on probabilistic databases as
an inferenceproblem inprobabilistic graphical mod-
els, and develop techniques for efficiently constructing
such models during query processing. This allows us to
choose from various inference algorithms (exact or ap-
proximate) for query evaluation, depending on our re-
quirements of accuracy and speed.

• We develop several optimizations specific to probabilis-
tic databases resulting in efficient query execution in
spite of the rich dependency modeling that we allow.

• We present experimental results from a prototype imple-
mentation over several real and synthetic datasets that
demonstrate the need for modeling and reasoning about
dependencies and the efficacy of our techniques at eval-
uating various queries including aggregate operators.

We begin with some background on tuple-level uncer-
tainty models and probabilistic graphical models (Section
2). We then present our proposed model for representing
correlated data (Section 3), discuss implementation issues
4) and present an experimental evaluation over a prototype
implementation (Section 5). Finally, we discuss related
work in Section 6, and conclude in Section 7.

2 Background

2.1 Independent Tuples Model [19, 12]

One of the most commonly used tuple-level uncertainty
models, theindependent tuples model[19, 12], associates
existence probabilities with individual tuples and assumes
that the tuples are independent of each other. Figure 1 (i)
shows an example of such a database,Dp, with relations
Sp (containing tupless1 ands2 with probabilities 0.6 and
0.5 resp) andT p (containing tuplet1 with probability 0.4).

Such a probabilistic database can be interpreted as a
probability distribution over the set of all possible determin-
istic database instances, calledpossible worlds(denoted by
pwd(D)) [25, 19, 12]. Each deterministic instance (world)
contains a subset of the tuples present in the probabilistic
database, and the probability associated with it can be calcu-
lated directly using the independence assumption (by multi-
plying together the existence probabilities of tuples present
in it and non-existence probabilities of tuples not present in
it). Figure 1 (ii) shows all the possible worlds forDp and
their associated probabilities. For example, the probability
of d2 = {s1, s2} is computed as0.6×0.5×(1−0.4) = 0.18.

This possible worlds interpretation lends highly intuitive
and precise semantics for query evaluation over probabilis-
tic databases. Letq be a query issued on a probabilistic
databaseDp. We evaluate such a query against each pos-
sible world in pwd(Dp) separately, thus resulting in an-
other set of (result) possible worlds (with the same asso-
ciated probabilities). The final result is obtained by taking
a union of all theresult possible worlds, and by associat-
ing a probability with each tuple in them to be the sum of

the probabilities of theresult possible worlds that contain
it. For instance, Figure 1 (iii) shows the results of execut-
ing

∏
D(Sp ./B=C T p) on each possible world ofDp and

Figure 1 (iv) shows the final probability computation.
Evaluating a query via the set of possible worlds is

clearly intractable as the number of possible worlds is ex-
ponential in the number of tuples contained in the database.
Previous literature [19, 12] has suggested two query eval-
uation strategies instead, calledextensionalandintensional
semantics. Intensional semantics guarantee results in accor-
dance with possible worlds semantics but are computation-
ally expensive. Extensional semantics, on the other hand,
are computationally cheaper but do not guarantee results in
accordance with the possible worlds semantics. This is be-
cause, even if base tuples are independent of each other, the
intermediate tuples that are generated during query evalua-
tion are typically correlated. For instance, in Figure 1, the
join operation if performed before the projection results in
two intermediate tuples,s1t1 ands2t1, that are not indepen-
dent of each other as they sharet1.

2.2 Tuple Correlations
As we discussed in Section 1, tuple correlations also oc-

cur naturally in many application domains, and ignoring
such correlations can result in highly inaccurate and unintu-
itive query results.

Consider the four sets of possible worlds shown in Fig-
ure 2 (i) derived from the same database shown in Figure 1
(i), but containing different sets of dependencies that we
might want to represent:

1. ind.: wheres1, s2, andt1 are independent of each other.

2. implies: presence oft1 implies absence ofs1 and s2

(t1 ⇒ ¬s1 ∧ ¬s2).

3. mutual exclusivity(mut. ex.): t1 ⇒ ¬s1 ands1 ⇒ ¬t1.

4. nxor: high positive correlation betweent1 ands1, pres-
ence (absence) of one almost certainly implies the pres-
ence (absence) of the other.

Figure 2 (ii) shows the result of applying the example query
from Figure 1 to these four possible worlds. As we can
see, although the tuple probabilities associated withs1, s2

and t1 are identical, the query results are drastically dif-
ferent across these four databases. Note that, since both
the approaches (intensional and extensional semantics) dis-
cussed in the previous section assume base tuple indepen-
dence, neither can be directly used to do query evaluation
in such cases.

2.3 Probabilistic Graphical Models and
Factored Representations

Probabilistic graphical modelsform a powerful class of
approaches that can compactly represent and reason about
complex dependency patterns involving large numbers of

Pr(X1 = x1, X2 = x2, X3 = x3) =

f1(X1 = x1)f12(X1 = x1, X2 = x2)f23(X2 = x2, X3 = x3)

x1 f1

0 0.6
1 0.4

x1 x2 f12

0 0 0.9
0 1 0.1
1 0 0.1
1 1 0.9

x2 x3 f23

0 0 0.7
0 1 0.3
1 0 0.3
1 1 0.7

(i)

x1 x2 x3 Pr

0 0 0 0.378
0 0 1 0.162
0 1 0 0.018
0 1 1 0.042
1 0 0 0.028
1 0 1 0.012
1 1 0 0.108
1 1 1 0.252

(ii)

X1

X2

X3

(iii)

Figure 3. Example involving three dependent random vari-
ables each with a binary domain: (i) factored representation
(ii) resulting joint probability distribution (iii) graphical model
representation.

correlated random variables [31, 10]. The key idea underly-
ing these approaches is the use offactored representations
for modeling the correlations.

Let X denote a random variable with a domaindom(X)
and letPr(X) denote a probability distribution over it.

Similarly, let X = {X1, X2, X3 . . . , Xn} denote a set
of n random variables each with its own associated domain
dom(Xi), andPr(X) denote the join probability distribu-
tion over them.

Definition 2.1. A factor2 f(X) is a function of a (small)
set of random variablesX = {X1, . . . , Xn} such that0 ≤
f(X = x) ≤ 1 ∀x ∈ dom(X1)× . . .× dom(Xn).

A factored representation ofPr(X) allows the distribu-
tion to be represented compactly as a product of factors:

Pr(X = x) =
m∏

i=1

fi(Xi = xi) (1)

whereXi ⊆ X is the set of random variables restricted to
factorfi andxi is the corresponding assignment. Figure 3
shows a small example of a factored representation of a joint
probability distribution over three random variables.

Computingmarginal probabilitiesis a common opera-
tion when dealing with such joint probability distributions.

2Factors can be seen as a generalization ofconditional probability ta-
blesin Bayesian networks [31].

Pr(XDp)=find
t1

(Xt1)fimplies
t1,s2

(Xt1 ,Xs2)

fimplies
t1,s1

(Xt1 ,Xs1)

Xt1 Xs1 f
implies
t1,s1

0 0 0
0 1 1
1 0 1
1 1 0

Xt1 Xs2 f
implies
t1,s2

0 0 1/6
0 1 5/6
1 0 1
1 1 0

(i)

Pr(XDp)=find
s2

(Xs2)

fmutex
t1,s1

(Xt1 ,Xs1)

Xt1 Xs1 fmutex
t1,s1

0 0 0
0 1 0.6
1 0 0.4
1 1 0

(ii)

Pr(XDp)=find
s2

(Xs2)

fnxor
t1,s1

(Xt1 ,Xs1)

Xt1 Xs1 fnxor
t1,s1

0 0 0.4
0 1 0.2
1 0 0
1 1 0.4

(iii)

Figure 4. Representing probabilistic databases with dependencies (examples from Figure 2): (i) “implies” dependency; (ii) “mut.
ex.” dependency; (iii) “nxor” dependency.f ind

t1 (Xt1) and f ind
s2 (Xs2) refer to the independent tuple factors fort1 and s2.

It falls under the general class of operations known asinfer-
ence. Given a random variableX ∈ X and an assignment
x ∈ dom(X), the marginal probability computation prob-
lem from the joint distributionPr(X) is:

Pr(X = x) =
∑
x∼x

Pr(X = x) (2)

wherex ∼ x denotes an assignment toX that agrees with
X = x andx is a valid assignment toX. We will discuss
inference techniques in Section 4.1.

3 Proposed Approach
We now describe how to represent dependencies in prob-

abilistic databases through the use of factors and random
variables. We then consider the query evaluation problem
over such databases, and begin by presenting an example
that grounds the basic ideas underlying our approach. We
then follow up with a more detailed description of the over-
all query evaluation procedure.

3.1 Representing Dependencies
Let t denote a tuple belonging to relationR such thatt is

a mapping from attributes inR to constants. In our frame-
work, every tuplet is associated with a unique boolean val-
ued random variableXt where0 representsfalse and1
representstrue .

A probabilistic relationR consists of a set of tuples with
their corresponding random variables and aprobabilistic
databaseD consists of a collection ofprobabilistic rela-
tions. We refer to the collection of all the random variables
associated with tuples in the probabilistic databaseD by the
symbolXD.

Each instance inpwd(D) can now be expressed as a
complete assignment to the set of random variablesXD de-
noted byxD ∈ {0, 1}|XD|. For example,d2 in Figure 2 (i)
corresponds to the assignmentXs1 = 1, Xs2 = 1, Xt1 = 0.

We can now represent dependencies by defining factors
on the tuple-based random variables in the database. The

probability of an instance can be computed by computing
the joint probability of the assignment toXD which can in
turn be obtained by multiplying all factors defined on the
tuple-based random variables in the database (Eq. (1)).

Example: Representing Independent Tuples.
We illustrate our approach by expressing the probabilistic
database in Figure 1 (i) (with three independent tuples) in
our formulation. This can be achieved by defining one fac-
tor per independent tuple:

Xs1 f ind
s1

0 0.4
1 0.6

Xs2 f ind
s2

0 0.5
1 0.5

Xt1 f ind
t1

0 0.6
1 0.4

To compute the probability for an instance we multiply
these factors. For instance:

Pr(d2 ={s1, s2}) = Pr(Xs1 = 1, Xs2 = 1, Xt1 = 0)

= f ind
s1

(Xs1 = 1)f ind
s2

(Xs2 = 1)f ind
t1 (Xt1 = 0)

= 0.6× 0.5× 0.6 = 0.18

Figure 4 shows the factored representations for the other
three probabilistic databases in Figure 2 (i).

3.2 Query Evaluation: Example
We begin our discussion on query evaluation by present-

ing a small example. Consider the database shown in Fig-
ure 2 (i) with the “nxor” dependency (Figure 4 (iii)). Fig-
ure 5 describes the execution of

∏
D(Sp ./B=C T p) on this

database.
Consider the intermediate tuples introduced during the

execution of this query. The tuplesi1 andi2, produced by
the join (Figure 5), are clearly uncertain tuples since they
are not produced in every instance of the database. Simi-
larly, the result tupler1 is also a probabilistic tuple. Let us
take a closer look at the inter-tuple dependencies:

• i1 is produced by possible worldd iff d contains boths1

andt1 (i.e.,s1 ∧ t1 ⇔ i1).

• Similarly, s2 ∧ t1 ⇔ i2.

• Finally, r1 is produced iff eitheri1 or i2 is produced.

Sp:
A B

s1 m 1
s2 n 1

find
s2

(Xs2)

T p:
C D

t1 1 p

fnxor
t1,s1

(Xt1 ,Xs1)

Sp./B=CT p

−→

fAND
i1,s1,t1

(Xi1 ,Xs1 ,Xt1)

fAND
i2,s2,t1

(Xi2 ,Xs2 ,Xt1)

A B C D
i1 m 1 1 p
i2 n 1 1 p

∏
D(Sp./B=CT p)

↓
D

r1 p

fOR
r1,i1,i2

(Xr1 ,Xi1 ,Xi2)

Figure 5. Solving
∏

D(Sp ./B=C T p) on Dp with “nxor” de-
pendency (Figure 2 (i)).

Figure 5 shows the factors for these dependencies:

• fand
i1,s1,t1

andfand
i2,s2,t1

return1 when the first argument is
the logical-and of the last two arguments (see Figure 6
(i) for the full definition offand

i1,s1,t1
).

• fOR
r1,i1,i2

returns1 when the first argument is the logical-
or of the last two arguments (Figure 6 (ii)).

Consider the factored probability distribution induced by
this query, i.e. the product of all the factors introduced in-
cluding the factors among the base tuples. It turns out that
the marginal probability ofPr(Xr1 = 1) returns the correct
answer0.40 matching the number in Figure 2 (ii).

3.3 Query Evaluation: Details
3.3.1 Generating factors during query evaluation

The query evaluation procedure presented through the ex-
ample above requires that we encode dependencies among
(intermediate) tuples by introducing factors. We now rede-
fine the three operatorsσ,

∏
,× to produce factors express-

ing such dependencies. Let us denote the new operators by
σp,

∏p
,×p where the superscript emphasizes that they are

operators for probabilistic databases. We will assume that
our queryq does not contain two copies of the same rela-
tion and consists of only the above three operators. In the
longer version of the paper [34] we describe redefinitions
for all relational algebra operators that do not make these
assumptions and can handle all relational algebra queries.

• select (σp
c): Supposeσp

c operator with predicatec acts
on tuplet and produces new tupler (both tuples contain-
ing the same mapping attribute-value mappings). There
are two cases to consider, ift does not satisfy the pred-
icatec, thenr cannot be produced and this is enforced
by afalse factor onXr that returns1 if Xr = 0 and0
whenXr = 1. The other case is whent satisfiesc and in
this case,Xr holds true in possible worldd if and only

Xi1 Xs1 Xt1 fand
i1,s1,t1

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

(i)

Xr1 Xi1 Xi2 for
r1,i1,i2

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(ii)

Figure 6. Definitions of (i) fAND
i1,s1,t1(Xi1 , Xs1 , Xt1) and (ii)

fOR
r1,i1,i2(Xr1 , Xi1 , Xi2) from Figure 5.

Fσ
p
c (q)(t)=


ffalse(Xt) if c(t)is false
fequals(Xt,Xt′)∪Fq(t′) if c(t) is true

where t = t′

F∏p
A

q(t)=for(Xt,{Xt′ |t=
∏

At′})∪{Fq(t′)|t=
∏

At′}

Fq×pq′ (t,t
′)=fand(Xt×t′ ,Xt,Xt′)∪Fq(t)∪Fq′ (t

′)

Figure 7. Definitions for relational algebra operators.

if Xt holds true. This is enforced by anequals factor
that takes argumentsXr andXt and returns1 whenever
Xr = Xt and0 o.w.

• join (×p): Let tuplest andt′ join to return new tupler.
In this case, as we saw in the example,Xr will hold true
in possible worldd if and only if bothXt andXt′ hold
true. This can be enforced with theand factor that we
introduced in the example (Figure 6 (i)).

• project(
∏p

A): Let tuplest1, . . . , tn project to form new
tuple r. In this case,Xr holds true in possible world
d if at least one ofXt1 , . . . , Xtn

hold true ind. This
can be enforced with a straightforward generalization of
theor factor, introduced in the example (Figure 6 (ii)),
for

r,t1,...tn
(Xr, Xt1 , . . . Xtn

) that returns 1 if the first ar-
gument is the logical-or of the lastn arguments.

Figure 7 defines the above operators in functional represen-
tation whereFq(t) denotes the set of factors required to
generate tuplet inductively on query planq and Figure 7
describes how we generate factors for a particular tuplet
and add them toFq(t).

3.3.2 Formulating the Query Evaluation Problem

We now justify our approach of generating factors for query
evaluation. LetPrq(t) denote the probability associated
with result tuple t produced by queryq issued on the
databaseD. Thus from possible world semantics:

Prq(t) =
∑

x∈{0,1}|XD|, t∼q(x)

P (XD = x)

X2 X3X1

Pr(x3)=
∑

x2,x1
f1(x1)f12(x1,x2)f23(x2,x3)

=
∑

x2
f23(x2,x3)

∑
x1

f1(x1)f12(x1,x2)︸ ︷︷ ︸
µ1(x2)

=
∑

x2
f23(x2,x3)µ1(x2)︸ ︷︷ ︸

µ2(x3)

(i)

........................ XnX2X1 Xn−1

Xr

↓
............................

..............

..........................

.............................

X1 X2 Xn−1 Xn

Xr

Y1
Yn−1

(ii)

A B C D
m
n 1

1 1 p
1 p

C

1

D

p

B

1m

A

n 1

fand
i2,s2,t1

fand
i1,s1,t1

find
s2

fnxor
t1,s1

i1
i2

t1

s2

s1

(iii)

Figure 8. (i) Marginal probability computation for X3 using variable elimination on the distribution shown in Figure 3. (ii) Trans-
forming a graphical model using decomposability (iii) Partitions for the “nxor” dependency shown in Figure 2 (i) with the partitions
introduced by the join shown in Figure 5.

wheret ∼ q(x) is true if t is included in the result ofq
applied to possible worldx.

Let Xt denote the random variable associated witht. We
would like to express the above computation as a marginal
probability computation problem on an appropriate distri-
butionPr(XD, Xt) such that:

Prq(t) =
∑

x∈{0,1}|XD|

Pr(XD = x, Xt = 1)

wherePr(XD, Xt) satisfies:

Pr(XD = x, Xt = 1) =
{

Pr(XD = x) if t ∼ q(x)
0 o.w.

(3)
It is easy to show that by introducing factors that main-

tain dependencies for the tuples generated by the query
we will, in fact, construct a joint distribution that satisfies
Eq. (3) (see [34] for full derivation). Computing the result
from this distribution is thus a matter of computing marginal
probabilities that requires inference in probabilistic graphi-
cal models.

4 Query Execution
In this section, we provide further details as to how we

execute queries in probabilistic databases with dependen-
cies. We begin with a description of variable elimination,
the inference algorithm used in our current implementation,
and discuss various optimizations to perform variable elim-
ination efficiently. After that we discuss ways to store prob-
abilistic databases with correlated tuples.

4.1 Inference in Graphical Models
Exact probabilistic inference is known to be NP-hard in

general [9]. However, many applications provide graphi-
cal models with a graph structure that allow efficient prob-
abilistic computation [37]. Variable elimination (VE), also

known asbucket elimination, [37, 15] is an exact inference
algorithm that has the ability to exploit this structure. VE
can be used to compute the marginal probabilities of a sin-
gle random variable from a joint distribution. The main ad-
vantages of VE are simplicity and generality.

Computing the marginals of a random variableX re-
quires that we sum out all the other random variables
present in the joint distribution (Eq. (2)). Figure 8 (i) shows
how VE computes the marginal probability corresponding
to X3 = x3 for the joint distribution described in Figure 3.
In Figure 8 (i) we first sum overX1 producing a new factor
µ1(X2) and then sum overX2 producing a factorµ2(X3)
from which we can retrieve the required result.

The complexity of VE depends on some natural parame-
ters relating to the connectivity of the graph underlying the
graphical model corresponding to the joint probability dis-
tribution [33]. The inference problem is easy if the graph-
ical model is or closely resembles a tree and the problem
becomes progressively harder as the graphical model devi-
ates more from being a tree. Interestingly, in the context of
probabilistic databases with independent base tuples, Dalvi
and Suciu [12] identified a class of queries that allow ef-
ficient evaluation (queries withsafe plans). In the longer
version of the paper [34], we show that safe plans give rise
to inference problems with tree-structured graphical models
where running inference is easy.

Another possible reason for inference being difficult is
due to the presence of factors involving a large number of
random variables. Projection and aggregate operations can
produce large factors but we can easily reduce the size of
these factors by exploitingdecomposability[38, 33]. This
allows us to break any large projection factor into numer-
ous (linear in the number of tuples involved in the projec-
tion) constant-sized 3-argument factors. Figure 8 (ii) shows
the pictorial representation of this optimization. The top
graphical model representsn tuples projecting into one re-
sult tuple producing a large factor. The bottom graphical

model shows the transformed graphical model that contains
n−1 new random variables and consists of only 3-argument
factors. All aggregate operators (e.g.,sum, max etc.) are
also decomposable with the exception ofavg . To compute
avg , we first computesum andcount , both of which are
decomposable, and then compute the average.

4.2 Representing Probabilistic Relations
Earlier approaches represented probabilistic relations by

storing uncertainty with each tuple in isolation. This ap-
proach is inadequate for our purposes since the same tuple
can be involved in multiple dependencies. In our implemen-
tation, we store the data and uncertainty parts separately.
The tuples are stored as part of relations. To store uncer-
tainty, we introduce the concept of apartition. A partition
consists of a factor and a set ofreferencesto the tuples
whose random variables form the arguments to that fac-
tor . Besides, each tuplet in a relation also contains a list of
pointers to the partitions that contain references to the tuple.
The relations and partitions together form a doubly-linked
data structure so that we can move from one to the other.
Figure 8 (iii) shows the arrangement of relations and parti-
tions for the database with the “nxor” dependency (Figure 4
(iii)) where dotted lines represent the pointers from tuples
to partitions and solid lines show the references.

4.3 Query Execution Steps
Here is a brief sketch of the steps we follow for SPJ

queries:

1. Perform early selections: We push down and execute as
many selections as possible.

2. Perform early projections: We also push down as many
projections as possible.

3. Join phase: In this phase, we perform all the join opera-
tions and perform them as part of one multi-join opera-
tion, creating partitions and intermediate relations (Fig-
ure 8 (iii) shows the partitions introduced due to a join
operation on the database shown in Figure 4 (iii)).

4. Perform final projection: Here we project onto the result
attributes specified by the user in the query.

5. Probability computation: For each result tuple, we re-
cursively collect all partitions required to perform infer-
ence and compute the required marginal probability.

We refer the interested reader to [34] for full details.

4.4 Further Optimizations
The memory required to hold all partitions to compute

probability for result tupler may exceed available memory.
To alleviate this problem we further divide the joint distri-
bution forr into many independent parts such that no tuple
reference from parti is involved in partj, wherei 6= j, and

compute the marginal probabilities for each part separately.
The probabilities from the various parts can be combined
easily since we know they are independent. A simple search
for connected components can be used to determine these
independent parts where we start with a graph of tuple ref-
erences collected from the various partitions and each ref-
erence is connected to all other references within the same
partition via edges. As part of our future work we aim to
use external memory graph algorithms [36] for these tasks.

When exact probabilistic inference turns out to be too
expensive we have the flexibility of switching to approxi-
mate inference techniques depending on the user’s require-
ments. Just like exact inference, approximate inference is
also known to be NP-hard [11]. However there exist a fairly
large variety of approximate inference algorithms that per-
form well in practice in a variety of cases each varying in
speed and accuracy e.g., Markov Chain Monte Carlo tech-
niques [23], Variational Methods [28] etc.

5 Experimental Study
In this section, we present an experimental evaluation

demonstrating the need for modeling tuple correlations, and
the effectiveness of our techniques at modeling such corre-
lations and evaluating queries over them. This evaluation
was done using a prototype system that we are currently
building on top of the Apache Derby Java DBMS [26]. Our
system supports the query execution strategies discussed in
the previous section.

Following Fuhr et al [19] and Dalvi et al [12], we gen-
erate probabilistic relations by issuingsimilarity predicates
over deterministic relations. Briefly, given a predicate of
the formR.a ≈ k, wherea is a string attribute, andk is a
string constant, the system assigns a probability to each tu-
ple t, based on howsimilar t.a is to k. Following the prior
work [12], we compute the3-gram distance[35] between
t.a andk, and convert it to a posterior probability by as-
suming that the distance is normally distributed with mean
0, and varianceσ (σ is a parameter to the system). The
details can be found in [12].

5.1 Need for Modeling Dependencies
Consider apublicationsdatabase containing two rela-

tions: (1)PUBS(PID, Title) , and (2)AUTHS(PID,
Name), where PID is the unique publication id, and con-
sider the task of retrieving all publications with titley writ-
ten by an author with namex. Assuming that the user is not
sure of the spellingsx andy, we might use the following
query to perform the above task:∏

Title(σName≈x(AUTHS) ./ σTitle≈y(PUBS))

As discussed above, the similarity predicates will cause
both the relations to be converted into probabilistic rela-
tions, AUTHSp and PUBSp. However, note thatAUTHSp

Title
Reinforcement learning with hidden states (by L. Lin, T. Mitchell)
Feudal Reinforcement Learning (by C. Atkeson, P. Dayan,. . .)
Reasoning (by C. Bereiter, M. Scardamalia)
. . .

Title
Reinforcement learning with hidden states (by L. Lin, T. Mitchell)
Feudal Reinforcement Learning (by C. Atkeson, P. Dayan,. . .)
Reasoning (by C. Bereiter, M. Scardamalia)
. . .

(i) MUTEX DB results atσ = 10, 50, 100 (ii) IND DB results atσ = 10

Title
Feudal Reinforcement Learning (by C. Atkeson, P. Dayan,. . .)
Decision making and problem solving (G. Dantzig, R. Hogarth,. . .)
Multimodal Learning Interfaces (by U. Bub, R. Houghton,. . .)
. . .

Title
Decision making and problem solving (G. Dantzig, R. Hogarth,. . .)
HERMES: A heterogeneous reasoning and mediator system (by S.
Adali, A. Brink, . . .)
Induction and reasoning from cases (by K. Althoff, E. Auriol,. . .)
. . .

(iii) IND DB results atσ = 50 (iv) IND DB results atσ = 100

Figure 9. Top three results for a similarity query: (i) shows results fromMUTEX DB; (ii), (iii) and (iv) show results from IND DB.

contains natural mutual exclusion dependencies with re-
spect to this query. Since the user is looking for publications
by a single author with namex, it is not possible forx to
match twoAUTHSp tuples corresponding to the same pub-
lication in the same possible world. Thus, any twoAUTHSp

tuples with the samePID exhibit a mutual exclusion depen-
dency, and a possible world containing both of them should
be assigned zero probability.

To illustrate the drawbacks of ignoring these mutual ex-
clusion dependencies, we ran the above query withx =
“T. Michel” and y = “Reinforment Leaning hiden stat” on
two probabilistic databases, one assuming complete inde-
pendence among tuples (IND DB) and another that models
the dependencies (MUTEX DB). We ran the query on an
extraction of 860 publications from the real-world CiteSeer
dataset [22]. We report results across various settings ofσ.

Figure 9 shows the top three results obtained from the
two databases at three different settings ofσ (we also list
the author names to aid the reader’s understanding).MU-
TEX DB returns intuitive and similar results at all three val-
ues ofσ. IND DB returns reasonable results only atσ = 10,
whereas atσ = 50, 100 it returns very odd results (“Deci-
sion making and problem solving” does not match the string
“Reinforment Leaning hiden stat” very closely and yet it is
assigned the highest rank atσ = 100). Figure 10 (i) shows
the cumulative recall graph forIND DB for various values
of σ, where we plot the fraction of the topN results re-
turned byMUTEX DB that were present in the topN re-
sults returned byIND DB. As we can see, atσ = 50 and
100, IND DB exhibits poor recall.

Figure 9 shows thatIND DB favors publications with
long author lists. This does not affect the results at low
values ofσ (=10) because, in that case, we use a “peaked”
gaussian which assigns negligible probabilities to possible
worlds with multipleAUTHSp from the same publication.
At larger settings ofσ, however, these possible worlds are
assigned larger probabilities andIND DB returns poor re-

sults.MUTEX DB assigns these possible worlds zero prob-
abilities by modeling dependencies on the base tuples.

We would like to note that, although setting the value of
σ carefully may have resulted in a good answer forIND DB
in this case, choosingσ is not easy in general and depends
on various factors such as user preferences, distributions of
the attributes in the database etc [12]. Modeling mutual
exclusion dependencies explicitly using our approach nat-
urally alleviates this problem.

5.2 Scalability
Next we study the scalability of our proposed query exe-

cution strategies using a randomly generated TPC-H dataset
of size 10MB. For simplicity, we assume complete indepen-
dence among the base tuples (though the intermediate tuples
may still be correlated).

Figure 10 (ii) shows the execution times on TPC-H
queries Q2 to Q8 (modified to remove the top-level aggre-
gations). The first bar on each query indicates the time it
took for our implementation to run the full query including
all the database operations and the probabilistic computa-
tions. The second bar on each query indicates the time it
took to run only the database operations using our Java im-
plementation. Here are the summary of the results:

• As we can see in Figure 10 (ii), for most queries the ad-
ditional cost of probability computations is comparable
to the cost of normal query processing.

• The two exceptions are Q3 and Q4 which severely tested
our probabilistic inference engine. By removing the ag-
gregate operations, Q3 resulted in a relation of size in
excess of 60,000 result tuples. Although Q4 resulted in
a very small relation, each result tuple was associated
with a probabilistic graphical model of size exceeding
15,000 random variables. Each of these graphical mod-
els are fairly sparse but book-keeping for such large data
structures took a significant amount of time.

• Q7 and Q8are queries without safe plans [12] yet their

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

R
ec

al
l

N

σ = 10
σ = 50

σ = 100

0

10

20

30

40

50

60

70

Q2 Q3 Q4 Q5 Q6 Q7 Q8

R
un

-t
im

es
 (s

ec
)

Full Query
Bare Query

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001

 0.0012
 0.0014

 1.7 1.8 1.9 2 2.1 2.2

pr
ob

ab
ili

ty

average

0.02516

(i) (ii) (iii)

Figure 10. (i) Cumulative recall graph comparing results ofIND DB and MUTEX DB for σ = 10, 50, 100. (ii) Run-times on TPC-H
data. (iii) AVGaggregate computed over 500 randomly generated tuples with attribute values ranging from 1 to 5.

run-times are surprisingly fast. By taking a closer look
we notice that both these queries gave rise to tree struc-
tured graphical models justifying our belief that there
are queries that lend to efficient probabilistic inference
even though they might not have safe plans.

5.3 Aggregate Operations
Our system also naturally supports efficient computation

of a variety of aggregate operators over probabilistic rela-
tions; details can be found the longer version of the pa-
per [34]. Figure 10 (iii) shows the result of running anaver-
agequery over a synthetically generated dataset containing
500 tuples. As we can see, the final result can be a fairly
complex probability distribution, which is quite common
for aggregate operations. Effective computation of aggre-
gates over large probabilistic databases is an open research
problem that we plan to study in future.

6 Related Work
The database community has seen a lot of work on

managing probabilistic, uncertain, incomplete, and/or fuzzy
data in database systems (see e.g. [32, 27, 2, 29, 30, 24, 19,
5, 7, 12, 4]). With a rapid increase in the number of appli-
cation domains such as data integration, pervasive comput-
ing etc., where uncertain data arises naturally, this area has
seen renewed interest in recent years (see [20] for a survey
of the ongoing research). From the uncertainty in artificial
intelligence community, Friedman et. al [18] (PRM) ad-
dress the problem of learning a probabilistic model from
a given database. While PRMs can represent uncertainty
in databases, Getoor et. al. [21] explore the application of
PRMs to answering selectivity estimation queries but not
queries expressed in standard database languages.

We will briefly discuss some of the closely related work
in the area ofprobabilistic data management. Previous
work in this area can be differentiated based on (a) whether
probabilities are associated withattributesor with tuples,
(b) whether the resulting relations are in the first normal
form (which is highly desirable given the complexity of
managing and querying data which is not in 1NF), and (c)

whether the correlations typically present in real-world data
can be modeled. Barbara et al [2] propose an approach that
associates probabilities with attributes and can model arbi-
trary correlations between attributeswithin a single tuple.
However the resulting relations are not in 1NF and further
the semantics of some of the query operators are messy,
both of which seriously limit the applicability of their ap-
proach. More recently, Choenni et al [8] discuss concep-
tually how to make the query semantics more consistent
through use of Dempster-Schafer theory.

Cavallo et al [6] and Dey et al [17] propose and study
tuple-level uncertainty models that explicitly capturemu-
tual exclusivity. More recently, Andritsos et al [1] use a
similar basic model to capturedirty data, and develop query
evaluation algorithms for the same. In a series of papers,
Fuhr and Rolleke [19] propose using tuple-level probabil-
ities to model uncertain data ininformation retrievalcon-
text, and present the intensional and extensional query eval-
uation techniques discussed in Section 2. Extending this
work, Dalvi and Suciu [12, 13] definesafe query plansto
be those for which extensional and intensional query evalu-
ation produces identical results, and show how to generate
a safe query plan for a query if one exists. Tuple indepen-
dence is assumed for most of the work by both these groups.
Lakshmanan et al [29] attempt to combine these different
approaches by associatingprobability intervalswith tuples
in their ProbViewsystem. Their model also supports vari-
ous conjunction and disjunctionstrategiesthat allow a lim-
ited encoding of tuple interdependences.

Cheng et al [7] associate (continuous) probability distri-
butions with attributes, and propose several query evalua-
tion and indexing techniques over such data. Trio [14, 3]
aims to provide a unified treatment ofdata uncertaintyby
studying the issues of completeness and closure under var-
ious alternative models for representing uncertainty. Their
recent work [3] combinesdata lineageanddata accuracyin
a single system by tracking lineage of tuples derived from
other tuples. However, they do not consider duplicate elim-
ination and aggregation, among other operations.

7 Conclusions
There is an increasing need for database solutions for

efficiently managing and querying uncertain data exhibit-
ing complex correlation patterns. In this paper, we pre-
sented a simple and intuitive framework, based on proba-
bilistic graphical models, for explicitly modeling correla-
tions among tuples in a probabilistic database . Our experi-
mental evaluation illustrates both the necessity of modeling
tuple correlations, and the effectiveness of our techniques
at representing and querying correlated datasets. Our re-
search so far has raised several interesting challenges that
we plan to pursue in future. Although conceptually our ap-
proach allows for capturing arbitrary tuple correlations, ex-
act query evaluation over large datasets exhibiting complex
correlations may not always be feasible. We plan to develop
approximate query evaluation techniques that can be used
in such cases. We are also planning to develop disk-based
query evaluation algorithms so that our techniques can scale
to very large datasets.

Acknowledgements: This work was supported by NSF
Grants CNS-0509220, IIS-0546136 and IIS-0308030. We
thank Lise Getoor for pointing us to relevant material on
probability theory and inference methods. We also thank
the anonymous reviewers for their helpful comments.

References

[1] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers
over dirty databases. InICDE, 2006.

[2] D. Barbara, H. Garcia-Molina, and D. Porter. The manage-
ment of probabilistic data. InKDE, 1992.

[3] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage. InVLDB,
2006.

[4] P. Bosc and O. Pivert. About projection-selection-join
queries addressed to possibilistic relational databases. In
IEEE Tran. on Fuzzy Systems, 2005.

[5] B. P. Buckles and F. E. Petry. A fuzzy model for relational
databases.Intl. Journal of Fuzzy Sets and Systems, 1982.

[6] R. Cavallo and M. Pittarelli. The theory of probabilistic
databases. InVLDB, 1987.

[7] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluat-
ing probabilistic queries over imprecise data. InSIGMOD,
2003.

[8] S. Choenni, H. E. Blok, and E. Leertouwer. Handling uncer-
tainty and ignorance in databases: A rule to combine depen-
dent data. InDatabase Systems for Adv. Apps., 2006.

[9] G. F. Cooper. The computational complexity of probabilistic
inference using Bayesian belief networks.Artificial Intelli-
gence, 1990.

[10] R. Cowell, S. Lauritzen, and D. Spiegelhater.Probabilistic
Networks and Expert Systems. Springer, New York, 1999.

[11] P. Dagum and M. Luby. Approximate probabilistic reason-
ing in Bayesian belief networks is NP-hard.Artificial Intel-
ligence, 1993.

[12] N. Dalvi and D. Suciu. Efficient query evaluation on proba-
bilistic databases. InVLDB, 2004.

[13] N. Dalvi and D. Suciu. Query answering using statistics and
probabilistic views. InVLDB, 2005.

[14] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. InICDE, 2006.

[15] R. Dechter. Bucket elimination: A unifying framework for
probabilistic inference. InUAI, 1996.

[16] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor net-
works. InVLDB, 2004.

[17] D. Dey and S. Sarkar. A probabilistic relational model and
algebra.ACM Trans. on Database Systems, 1996.

[18] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. InIJCAI, 1999.

[19] N. Fuhr and T. Rolleke. A probabilistic relational algebra
for the integration of information retrieval and database sys-
tems.ACM Trans. on Information Systems, 1997.

[20] M. Garofalakis and D. Suciu, editors.IEEE Data Engineer-
ing Bulletin Special Issue on Probabilistic Data Manage-
ment. March 2006.

[21] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation
using probabilistic models. InSIGMOD, 2001.

[22] C. Giles, K. Bollacker, and S. Lawrence. Citeseer: An au-
tomatic citation indexing system. InConf. on Digit. Libs.,
1998.

[23] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter.Markov
Chain Monte Carlo in Practice. Chapman & Hall, 1996.

[24] G. Grahne. Horn tables - an efficient tool for handling in-
complete information in databases. InPODS, 1989.

[25] J. Halpern. An analysis of first-order logics for reasoning
about probability.Artificial Intelligence, 1990.

[26] http://db.apache.org/derby. The Apache Derby Project.
[27] T. Imielinski and W. Lipski, Jr. Incomplete information in

relational databases.Journal of the ACM, 1984.
[28] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul.

An introduction to variational methods for graphical models.
Machine Learning, 1999.

[29] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrah-
manian. Probview: a flexible probabilistic database system.
ACM Trans. on Database Systems, 1997.

[30] S. K. Lee. An extended relational database model for uncer-
tain and imprecise information. InVLDB, 1992.

[31] J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

[32] H. Prade and C. Testemale. Generalizing database relational
algebra for the treatment of incomplete or uncertain infor-
mation and vague queries.Information Sciences, 1984.

[33] I. Rish. Efficient Reasoning in Graphical Models. PhD the-
sis, University of California, Irvine, 1999.

[34] P. Sen and A. Deshpande. Representing and querying cor-
related tuples in probabilistic databases. Technical Report
CS-TR-4820, University of Maryland, College Park, 2006.

[35] E. Ukkonen. Approximate string matching with q-grams and
maximal matches. InTheoretical Computer Science, 1992.

[36] J. S. Vitter. External memory algorithms and data structures:
Dealing with massive data.ACM Computing Surveys, 2001.

[37] N. L. Zhang and D. Poole. A simple approach to Bayesian
network computations. InCanadian Artif. Intel. Conf., 1994.

[38] N. L. Zhang and D. Poole. Exploiting causal independence
in Bayesian network inference.Journal of Artificial Intelli-
gence Research, 1996.

